ﻻ يوجد ملخص باللغة العربية
Perturbations in cosmic microwave background (CMB) photons and large scale structure of the universe are sourced primarily by the curvature perturbation which is widely believed to be produced during inflation. In this paper we present a 2-field inflationary model in which the inflaton couples bi-quadratically to a spectator field. We show that the spectator induces a rapid growth of the momentum of the curvature perturbation and the associated Gaussian van Neumann entropy during inflation such that the initial conditions at the end of inflation are substantially different from the standard ones. Consequently, one ought to reconsider the kinetic equations describing evolution of the photon, dark matter and baryonic fluids in radiation and matter eras and take account of the fact that the curvature perturbation and its canonical momentum are two {it a priory} independent stochastic fields. We also briefly analyze possible imprints on the CMB temperature fluctuations from the more general inflationary scenario which contains light spectator fields coupled to the inflaton.
In the context of string theory, several conjectural conditions have been proposed for low energy effective field theories not to be in swampland, the UV-incomplete class. The recent ones represented by the de Sitter and trans-Planckian censorship co
In this work we study the imprints of a primordial cosmic string on inflationary power spectrum. Cosmic string induces two distinct contributions on curvature perturbations power spectrum. The first type of correction respects the translation invaria
We do a complete calculation of the stochastic gravitational wave background to be expected from cosmic strings. We start from a population of string loops taken from simulations, smooth these by Lorentzian convolution as a model of gravitational bac
The non-Gaussian distribution of primordial perturbations has the potential to reveal the physical processes at work in the very early Universe. Local models provide a well-defined class of non-Gaussian distributions that arise naturally from the non
Bursts of particle production during inflation provide a well-motivated mechanism for creating bump like features in the primordial power spectrum. Current data constrains these features to be less than about 5% the size of the featureless primordial