ﻻ يوجد ملخص باللغة العربية
Molecular chirality is an omnipresent phenomenon of fundamental significance in physics, chemistry and biology. For this reason, search for novel techniques for enantioselective control, detection and separation of chiral molecules is of particular importance. It has been recently predicted that laser fields with twisted polarization may induce persistent enantioselective field-free orientation of chiral molecules. Here we report the first experimental observation of this phenomenon using propylene oxide molecules ($mathrm{CH_{3}CHCH_{2}O}$, or PPO) spun by an optical centrifuge - a laser pulse, whose linear polarization undergoes an accelerated rotation around its propagation direction. We show that PPO molecules remain oriented on a time scale exceeding the duration of the centrifuge pulse by several orders of magnitude. The demonstrated long-time field-free enantioselective orientation opens new avenues for optical manipulation, discrimination, and, potentially, separation of molecular enantiomers.
We explore a pure optical method for enantioselective orientation of chiral molecules by means of laser fields with twisted polarization. Several field implementations are considered, including a pair of delayed cross-polarized laser pulses, an optic
We study interaction of generic asymmetric molecules with a pair of strong time-delayed short laser pulses with crossed linear polarizations. We show that such an excitation not only provides unidirectional rotation of the most polarizable molecular
We report the first experimental observation of non-adiabatic field-free orientation of a heteronuclear diatomic molecule (CO) induced by an intense two-color (800 and 400 nm) femtosecond laser field. We monitor orientation by measuring fragment ion
Alignment and orientation of molecules by intense, ultrashort laser fields are crucial for a variety of applications in physics and chemistry. These include control of high harmonics generation, molecular orbitals tomography, control of molecular pho
We report on the first experimental demonstration of enantioselective rotational control of chiral molecules with a laser field. In our experiments, two enantiomers of propylene oxide are brought to accelerated unidirectional rotation by means of an