ﻻ يوجد ملخص باللغة العربية
In this paper we study the locus of generalized degree $d$ Henon maps in the parameter space $operatorname{Rat}_d^N$ of degree $d$ rational maps $mathbb{P}^Ntomathbb{P}^N$ modulo the conjugation action of $operatorname{SL}_{N+1}$. We show that Henon maps are in the GIT unstable locus if $Nge3$ or $dge3$, and that they are semistable, but not stable, in the remaining case of $N=d=2$. We also give a general classification of all unstable maps in $operatorname{Rat}_2^2$.
Motivated by the dynamical uniform boundedness conjecture of Morton and Silverman, specifically in the case of quadratic polynomials, we give a formal construction of a certain class of dynamical analogues of classical modular curves. The preperiodic
We show that the dynamics of sufficiently dissipative semi-Siegel complex Henon maps with golden-mean rotation number is not $J$-stable in a very strong sense. By the work of Dujardin and Lyubich, this implies that the Newhouse phenomenon occurs for
Given a number field $K$ and a polynomial $f(z) in K[z]$ of degree at least 2, one can construct a finite directed graph $G(f,K)$ whose vertices are the $K$-rational preperiodic points for $f$, with an edge $alpha to beta$ if and only if $f(alpha) =
We study the problem of finding algebraically stable models for non-invertible holomorphic fixed point germs $fcolon (X,x_0)to (X,x_0)$, where $X$ is a complex surface having $x_0$ as a normal singularity. We prove that as long as $x_0$ is not a cusp
We describe an algorithm for distinguishing hyperbolic components in the parameter space of quadratic rational maps with a periodic critical point. We then illustrate computer images of the hyperbolic components of the parameter spaces V1 - V4, which