ﻻ يوجد ملخص باللغة العربية
We report the statistical physical properties of the C$^{18}$O($J=1-0$) clumps present in a prominent cluster-forming region, Cygnus X, using the dataset obtained by the Nobeyama 45-m radio telescope. This survey covers 9 deg$^2$ of the north and south regions of Cygnus X, and totally 174 C$^{18}$O clumps are identified using the dendrogram method. Assuming a distance of 1.4 kpc, these clumps have radii of 0.2-1 pc, velocity dispersions of $<2.2~mathrm{km~s^{-1}}$, gas masses of 30-3000 $M_odot$, and H$_2$ densities of (0.2-5.5)$times10^4~mathrm{cm^{-3}}$. We confirm that the C$^{18}$O clumps in the north region have a higher H$_2$ density than those in the south region, supporting the existence of a difference in the evolution stages, consistent with the star formation activity of these regions. The difference in the clump properties of the star-forming and starless clumps is also confirmed by the radius, velocity dispersion, gas mass, and H$_2$ density. The average virial ratio of 0.3 supports that these clumps are gravitationally bound. The C$^{18}$O clump mass function shows two spectral index components, $alpha=-1.4$ in 55-140 $M_odot$ and $alpha=-2.1$ in $>140~M_odot$, which are consistent with the low- and intermediate-mass parts of the Kroupas initial mass function. The spectral index in the star-forming clumps in $>140~M_odot$ is consistent with that of the starless clumps in 55-140 $M_odot$, suggesting that the latter will evolve into star-forming clumps while retaining the gas accretion. Assuming a typical star formation efficiency of molecular clumps (10%), about ten C$^{18}$O clumps having a gas mass of $>10^3~M_odot$ will evolve into open clusters containing one or more OB stars.
We present an unbiased large-scale (9 deg$^2$) CN ($N$=1-0) and C$^{18}$O ($J$=1-0) survey of Cygnus-X conducted with the Nobeyama 45m Cygnus-X CO survey. CN and C$^{18}$O are detected in various objects towards the Cygnus-X North and South (e.g., DR
We present the $^{13}$CO/C$^{18}$O (J=3-2) Heterodyne Inner Milky Way Plane Survey (CHIMPS) which has been carried out using the Heterodyne Array Receiver Program on the 15 m James Clerk Maxwell Telescope (JCMT) in Hawaii. The high-resolution spectra
We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure 13CO(1-0)/C18O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of CO are typically optically thin across most of the area in galaxy disks,
We conducted an exploration of 12CO molecular outflows in the Orion A giant molecular cloud to investigate outflow feedback using 12CO (J = 1-0) and 13CO (J = 1-0) data obtained by the Nobeyama 45-m telescope. In the region excluding the center of OM
Neither HI nor CO emission can reveal a significant quantity of so-called dark gas in the interstellar medium (ISM). It is considered that CO-dark molecular gas (DMG), the molecular gas with no or weak CO emission, dominates dark gas. We identified 3