ترغب بنشر مسار تعليمي؟ اضغط هنا

PointHop: An Explainable Machine Learning Method for Point Cloud Classification

159   0   0.0 ( 0 )
 نشر من قبل Min Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

An explainable machine learning method for point cloud classification, called the PointHop method, is proposed in this work. The PointHop method consists of two stages: 1) local-to-global attribute building through iterative one-hop information exchange, and 2) classification and ensembles. In the attribute building stage, we address the problem of unordered point cloud data using a space partitioning procedure and developing a robust descriptor that characterizes the relationship between a point and its one-hop neighbor in a PointHop unit. When we put multiple PointHop units in cascade, the attributes of a point will grow by taking its relationship with one-hop neighbor points into account iteratively. Furthermore, to control the rapid dimension growth of the attribute vector associated with a point, we use the Saab transform to reduce the attribute dimension in each PointHop unit. In the classification and ensemble stage, we feed the feature vector obtained from multiple PointHop units to a classifier. We explore ensemble methods to improve the classification performance furthermore. It is shown by experimental results that the PointHop method offers classification performance that is comparable with state-of-the-art methods while demanding much lower training complexity.



قيم البحث

اقرأ أيضاً

As the basic task of point cloud analysis, classification is fundamental but always challenging. To address some unsolved problems of existing methods, we propose a network that captures geometric features of point clouds for better representations. To achieve this, on the one hand, we enrich the geometric information of points in low-level 3D space explicitly. On the other hand, we apply CNN-based structures in high-level feature spaces to learn local geometric context implicitly. Specifically, we leverage an idea of error-correcting feedback structure to capture the local features of point clouds comprehensively. Furthermore, an attention module based on channel affinity assists the feature map to avoid possible redundancy by emphasizing its distinct channels. The performance on both synthetic and real-world point clouds datasets demonstrate the superiority and applicability of our network. Comparing with other state-of-the-art methods, our approach balances accuracy and efficiency.
Deep one-class classification variants for anomaly detection learn a mapping that concentrates nominal samples in feature space causing anomalies to be mapped away. Because this transformation is highly non-linear, finding interpretations poses a sig nificant challenge. In this paper we present an explainable deep one-class classification method, Fully Convolutional Data Description (FCDD), where the mapped samples are themselves also an explanation heatmap. FCDD yields competitive detection performance and provides reasonable explanations on common anomaly detection benchmarks with CIFAR-10 and ImageNet. On MVTec-AD, a recent manufacturing dataset offering ground-truth anomaly maps, FCDD sets a new state of the art in the unsupervised setting. Our method can incorporate ground-truth anomaly maps during training and using even a few of these (~5) improves performance significantly. Finally, using FCDDs explanations we demonstrate the vulnerability of deep one-class classification models to spurious image features such as image watermarks.
Tiny object classification problem exists in many machine learning applications like medical imaging or remote sensing, where the object of interest usually occupies a small region of the whole image. It is challenging to design an efficient machine learning model with respect to tiny object of interest. Current neural network structures are unable to deal with tiny object efficiently because they are mainly developed for images featured by large scale objects. However, in quantum physics, there is a great theoretical foundation guiding us to analyze the target function for image classification regarding to specific objects size ratio. In our work, we apply Tensor Networks to solve this arising tough machine learning problem. First, we summarize the previous work that connects quantum spin model to image classification and bring the theory into the scenario of tiny object classification. Second, we propose using 2D multi-scale entanglement renormalization ansatz (MERA) to classify tiny objects in image. In the end, our experimental results indicate that tensor network models are effective for tiny object classification problem and potentially will beat state-of-the-art. Our codes will be available online https://github.com/timqqt/MERA_Image_Classification.
As 3D point cloud analysis has received increasing attention, the insufficient scale of point cloud datasets and the weak generalization ability of networks become prominent. In this paper, we propose a simple and effective augmentation method for th e point cloud data, named PointCutMix, to alleviate those problems. It finds the optimal assignment between two point clouds and generates new training data by replacing the points in one sample with their optimal assigned pairs. Two replacement strategies are proposed to adapt to the accuracy or robustness requirement for different tasks, one of which is to randomly select all replacing points while the other one is to select k nearest neighbors of a single random point. Both strategies consistently and significantly improve the performance of various models on point cloud classification problems. By introducing the saliency maps to guide the selection of replacing points, the performance further improves. Moreover, PointCutMix is validated to enhance the model robustness against the point attack. It is worth noting that when using as a defense method, our method outperforms the state-of-the-art defense algorithms. The code is available at:https://github.com/cuge1995/PointCutMix
162 - Shuang Deng , Bo Liu , Qiulei Dong 2021
Many recent works show that a spatial manipulation module could boost the performances of deep neural networks (DNNs) for 3D point cloud analysis. In this paper, we aim to provide an insight into spatial manipulation modules. Firstly, we find that th e smaller the rotational degree of freedom (RDF) of objects is, the more easily these objects are handled by these DNNs. Then, we investigate the effect of the popular T-Net module and find that it could not reduce the RDF of objects. Motivated by the above two issues, we propose a rotation transformation network for point cloud analysis, called RTN, which could reduce the RDF of input 3D objects to 0. The RTN could be seamlessly inserted into many existing DNNs for point cloud analysis. Extensive experimental results on 3D point cloud classification and segmentation tasks demonstrate that the proposed RTN could improve the performances of several state-of-the-art methods significantly.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا