ﻻ يوجد ملخص باللغة العربية
We demonstrate several explicit duality mappings between elasticity of two-dimensional crystals and fracton tensor gauge theories, expanding on recent works by two of the present authors. We begin by dualizing the quantum elasticity theory of an ordinary commensurate crystal, which maps directly onto a fracton tensor gauge theory, in a natural tensor analogue of the conventional particle-vortex duality transformation of a superfluid. The transverse and longitudinal phonons of a crystal map onto the two gapless gauge modes of the tensor gauge theory, while the topological lattice defects map onto the gauge charges, with disclinations corresponding to isolated fractons and dislocations corresponding to dipoles of fractons. We use the classical limit of this duality to make new predictions for the finite-temperature phase diagram of fracton models, and provide a simpler derivation of the Halperin-Nelson-Young theory of thermal melting of two-dimensional solids. We extend this duality to incorporate bosonic statistics, which is necessary for a description of the quantum melting transitions. We thereby derive a hybrid vector-tensor gauge theory which describes a supersolid phase, hosting both crystalline and superfluid orders. The structure of this gauge theory puts constraints on the quantum phase diagram of bosons, and also leads to the concept of symmetry enriched fracton order. We formulate the extension of these dualities to systems breaking time-reversal symmetry. We also discuss the broader implications of these dualities, such as a possible connection between fracton phases and the study of interacting topological crystalline insulators.
Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topol
A powerful mechanism for constructing gauge theories is to start from a theory with a global symmetry, then apply the gauge principle, which demands that this symmetry hold locally. For example, the global phase rotation of a system of conserved char
As new kinds of stabilizer code models, fracton models have been promising in realizing quantum memory or quantum hard drives. However, it has been shown that the fracton topological order of 3D fracton models occurs only at zero temperature. In this
Motivated by the recently established duality between elasticity of crystals and a fracton tensor gauge theory, we combine it with boson-vortex duality, to explicitly account for bosonic statistics of the underlying atoms. We thereby derive a hybrid
We formulate a fracton-elasticity duality for twisted moire superlattices, taking into account that they are incommensurate crystals with dissipative phason dynamics. From a dual tensor-gauge formulation, as compared to standard crystals, we identify