ﻻ يوجد ملخص باللغة العربية
This paper proposes a peer to peer (P2P), blockchain based energy trading market platform for residential communities with the objective of reducing overall community peak demand and household electricity bills. Smart homes within the community place energy bids for its available distributed energy resources (DERs) for each discrete trading period during a day, and a double auction mechanism is used to clear the market and compute the market clearing price (MCP). The marketplace is implemented on a permissioned blockchain infrastructure, where bids are stored to the immutable ledger and smart contracts are used to implement the MCP calculation and award service contracts to all winning bids. Utilizing the blockchain obviates the need for a trusted, centralized auctioneer, and eliminates vulnerability to a single point of failure. Simulation results show that the platform enables a community peak demand reduction of 46%, as well as a weekly savings of 6%. The platform is also tested at a real-world Canadian microgrid using the Hyperledger Fabric blockchain framework, to show the end to end connectivity of smart home DERs to the platform.
Air conditioning (AC) accounts for a critical portion of the global energy consumption. To improve its energy performance, it is important to fairly benchmark its energy performance and provide the evaluation feedback to users. However, this task has
In recent times, developments in field of communication and robotics has progressed with leaps and bounds. In addition, the blend of both disciplines has contributed heavily in making human life easier and better. So in this work while making use of
The empirical mode decomposition (EMD) method and its variants have been extensively employed in the load and renewable forecasting literature. Using this multiresolution decomposition, time series (TS) related to the historical load and renewable ge
Inspired from recent insights into the common ground of machine learning, optimization and decision-making, this paper proposes an easy-to-implement, but effective procedure to enhance both the quality of renewable energy forecasts and the competitiv
We consider the computation of resilient controllers for perturbed non-linear dynamical systems w.r.t. linear-time temporal logic specifications. We address this problem through the paradigm of Abstraction-Based Controller Design (ABCD) where a finit