ﻻ يوجد ملخص باللغة العربية
Bulk glasses exhibit extra vibrational modes at low energies, known as the boson peak. The microscopic dynamics in nanoscale alumina impact the performance of qubits and other superconducting devices, however the existence of the boson peak in these glasses has not been previously measured. Here we report neutron spectroscopy on Al/Al$_2$O$_{3-x}$ nanoparticles consisting of spherical metallic cores from 20 to 1000 nm surrounded by a 3.5 nm thick alumina glass. An intense low-energy peak is observed at $omega_{BP}$ = 2.8 $pm$ 0.6 meV for highly oxidised particles, concurrent with an excess in the density of states. The intensity of the peak scales inversely with particle size and oxide fraction indicating a surface origin, and is red-shifted by 3 meV with respect to the van-Hove singularity of $gamma$-phase Al$_2$O$_{3-x}$ nanocrystals. Molecular dynamics simulations of $alpha$-Al$_2$O$_{3-x}$, $gamma$-Al$_2$O$_{3-x}$ and a-Al$_2$O$_{3-x}$ show that the observed boson peak is a signature of the ultrathin glass surface, and the frequency is softened compared to that of the hypothetical bulk glass.
The local coordination numbers of As$_2$Se$_3$ glass were determined by a combination of anomalous x-ray scattering experiments, reverse Monte Carlo calculations, and {it ab initio} molecular dynamics simulations. The well-known `8-$N$ bonding rule p
Oxide heterointerfaces constitute a rich platform for realizing novel functionalities in condensed matter. A key aspect is the strong link between structural and electronic properties, which can be modified by interfacing materials with distinct latt
We compute the dielectric response of glasses starting from a microscopic system-bath Hamiltonian of the Zwanzig-Caldeira-Leggett type and using an ansatz from kinetic theory for the memory function in the resulting Generalized Langevin Equation. The
The ferroelectric (FE) control of electronic transport is one of the emerging technologies in oxide heterostructures. Many previous studies in FE tunnel junctions (FTJs) exploited solely the differences in the electrostatic potential across the FTJs
We theoretically study the topological robustness of the surface physics induced by Weyl Fermi-arc surface states in the presence of short-ranged quenched disorder and surface-bulk hybridization. This is investigated with numerically exact calculatio