ﻻ يوجد ملخص باللغة العربية
In this paper we prove that the $k$-th order metric-affine Lovelock Lagrangian is not a total derivative in the critical dimension $n=2k$ in the presence of non-trivial non-metricity. We use a bottom-up approach, starting with the study of the simplest cases, Einstein-Palatini in two dimensions and Gauss-Bonnet-Palatini in four dimensions, and focus then on the critical Lovelock Lagrangian of arbitrary order. The two-dimensional Einstein-Palatini case is solved completely and the most general solution is provided. For the Gauss-Bonnet case, we first give a particular configuration that violates at least one of the equations of motion and then show explicitly that the theory is not a pure boundary term. Finally, we make a similar analysis for the $k$-th order critical Lovelock Lagrangian, proving that the equation of the coframe is identically satisfied, while the one of the connection only holds for some configurations. In addition to this, we provide some families of non-trivial solutions.
This article presents a systematic way to solve for the Affine Connection in Metric-Affine Geometry. We start by adding to the Einstein-Hilbert action, a general action that is linear in the connection and its partial derivatives and respects project
We present a framework in which the projective symmetry of the Einstein-Hilbert action in metric-affine gravity is used to induce an effective coupling between the Dirac lagrangian and the Maxwell field. The effective $U(1)$ gauge potential arises as
This Thesis is devoted to the study of Metric-Affine Theories of Gravity and Applications to Cosmology. The thesis is organized as follows. In the first Chapter we define the various geometrical quantities that characterize a non-Riemannian geometry.
The intriguing choice to treat alternative theories of gravity by means of the Palatini approach, namely elevating the affine connection to the role of independent variable, contains the seed of some interesting (usually under-explored) generalizatio
In this paper we review the Myrzakulov Gravity models (MG-N, with $mathrm{N = I, II, ldots, VIII}$) and derive their respective metric-affine generalizations (MAMG-N), discussing also their particular sub-cases. The field equations of the theories ar