ﻻ يوجد ملخص باللغة العربية
The aim of this work is to present a formulation to solve the one-dimensional Ising model using the elementary technique of mathematical induction. This formulation is physically clear and leads to the same partition function form as the transfer matrix method, which is a common subject in the introductory courses of statistical mechanics. In this way our formulation is a useful tool to complement the traditional more abstract transfer matrix method. The method can be straightforwardly generalized to other short-range chains, coupled chains and is also computationally friendly. These two approaches provide a more complete understanding of the system, and therefore our work can be of broad interest for undergraduate teaching in statistical mechanics.
The critical behavior of the Ising chain with long-range ferromagnetic interactions decaying with distance $r^alpha$, $1<alpha<2$, is investigated using a numerically efficient transfer matrix (TM) method. Finite size approximations to the infinite c
For the one-dimensional Ising chain with spin-$1/2$ and exchange couple $J$ in a steady transverse field(TF), an analytical theory has well been developed in terms of some topological order parameters such as Berry phase(BP). For a TF Ising chain, th
A new algebraic method is developed to reduce the size of the transfer matrix of Ising and three-state Potts ferromagnets, on strips of width r sites of square and triangular lattices. This size reduction has been set up in such a way that the maximu
The Quantum Transfer Matrix method based on the Suzuki-Trotter formulation is extended to dynamical problems. The auto-correlation functions of the Transverse Ising chain are derived by this method. It is shown that the Trotter-directional correlatio
We investigate the statistical mechanics of the periodic one-dimensional Ising chain when the number of positive spins is constrained to be either an even or an odd number. We calculate the partition function using a generalization of the transfer ma