ﻻ يوجد ملخص باللغة العربية
The $Z$-portal is one of most popular and well-explored scenarios of dark matter (DM). To avoid the strong constraints coming from dilepton resonance searches at the LHC and direct detection of DM, it is usually required that in addition to being leptophobic, the $Z$ is axially coupled to either the (fermionic) DM or the standard model (SM) quarks. The first possibility has been extensively studied both in the context of simplified model and UV complete scenarios. However, the studies on the second possibiliy are largely confined to simplified models only. Here, we construct the minimal UV completion of these models satisfying both the criteria of leptophobia and purely axial $Z-$quark coupling. The anomaly cancellation conditions demand highly non-trivial structures, not only in the dark sector, but also in the Higgs sector.
We show in this work how a sub-100 GeV $Z$ in a $U(1)$ extension of the Standard Model (SM) can emerge through Higgs mediated channels at the Large Hadron Collider (LHC). The light $Z$ has minimal interaction with the SM sector as well as vanishing k
We show that it is not possible to UV-complete certain low-energy effective theories with spontaneously broken space-time symmetries by embedding them into linear sigma models, that is, by adding radial modes and restoring the broken symmetries. When
One of the most challenging hurdles to the construction of realistic composite Higgs models is the generation of Yukawa couplings for the Standard Model fermions. This problem can be successfully addressed in approximate conformal theories that admit
The novel PQ mechanism replaces the strong CP problem with some challenges in a model building. In particular, the challenges arise regarding i) the origin of an anomalous global symmetry called a PQ symmetry, ii) the scale of the PQ symmetry breakin
We have witnessed the beginning of an era where dark matter and neutrino detectors can probe similar new physics phenomena. Motivated by the low-energy electron recoil spectrum observed by the dark matter experiment, XENON1T, at Gran Sasso laboratory