ﻻ يوجد ملخص باللغة العربية
In the binary black hole model of OJ 287 the secondary black hole orbits a much more massive primary, and impacts on the primary accretion disk at predictable times. We update the parameters of the disk, the viscosity $alpha$ and the mass accretion rate $dot m$. We find $alpha=0.26 pm 0.1$ and $dot m = 0.08 pm 0.04$ in Eddington units. The former value is consistent with Coroniti (1981) and the latter with Marscher and Jorstad (2011). Predictions are made for the 2019 July 30 superflare in OJ 287. We expect that it will take place simultaneously at the Spitzer infrared channels as well as in the optical and that therefore the timing of the flare in optical can be accurately determined from Spitzer observations. We also discuss in detail the light curve of the 2015 flare and find that the radiating volume has regions where bremsstrahlung dominates as well as regions that radiate primarily in synchrotron radiation. The former region produces the unpolarised first flare while the latter region gives rise to a highly polarized second flare.
Binary black hole (BH) central engine description for the unique blazar OJ 287 predicted that the next secondary BH impact-induced bremsstrahlung flare should peak on 2019 July 31. This prediction was based on detailed general relativistic modeling o
We present a multi-wavelength spectral and temporal analysis of the blazar OJ 287 during its recent activity between December 2015 -- May 2016, showing strong variability in the near-infrared (NIR) to X-ray energies with detection at $gamma$-ray ener
Results from regular monitoring of relativistic compact binaries like PSR 1913+16 are consistent with the dominant (quadrupole) order emission of gravitational waves (GWs). We show that observations associated with the binary black hole central engin
We present recent optical photometric observations of the blazar OJ 287 taken during September 2015 -- May 2016. Our intense observations of the blazar started in November 2015 and continued until May 2016 and included detection of the large optical
Supermassive binary black holes (SMBBHs) are laboratories par excellence for relativistic effects, including precession effects in the Kerr metric and the emission of gravitational waves. Binaries form in the course of galaxy mergers, and are a key c