ﻻ يوجد ملخص باللغة العربية
Thin-plate splines can be used for interpolation of image values, but can also be used to represent a smooth surface, such as the boundary between two structures. We present a method for partitioning vertebra segmentation masks into two substructures, the vertebral body and the posterior elements, using a convolutional neural network that predicts the boundary between the two structures. This boundary is modeled as a thin-plate spline surface defined by a set of control points predicted by the network. The neural network is trained using the reconstruction error of a convolutional autoencoder to enable the use of unpaired data.
Digital hologram rendering can be performed by a convolutional neural network, trained with image pairs calculated by numerical wave propagation from sparse generating images. 512-by-512 pixeldigital Gabor magnitude holograms are successfully estimat
Perception plays an important role in reliable decision-making for autonomous vehicles. Over the last ten years, huge advances have been made in the field of perception. However, perception in extreme weather conditions is still a difficult problem,
Breast cancer has become one of the most prevalent cancers by which people all over the world are affected and is posed serious threats to human beings, in a particular woman. In order to provide effective treatment or prevention of this cancer, dise
Semantic image segmentation is the process of labeling each pixel of an image with its corresponding class. An encoder-decoder based approach, like U-Net and its variants, is a popular strategy for solving medical image segmentation tasks. To improve
The traditional image compressors, e.g., BPG and H.266, have achieved great image and video compression quality. Recently, Convolutional Neural Network has been used widely in image compression. We proposed an attention-based convolutional neural net