ترغب بنشر مسار تعليمي؟ اضغط هنا

Forecasting Mobile Traffic with Spatiotemporal correlation using Deep Regression

237   0   0.0 ( 0 )
 نشر من قبل Giulio Siracusano Dr.
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The concept of mobility prediction represents one of the key enablers for an efficient management of future cellular networks, which tend to be progressively more elaborate and dense due to the aggregation of multiple technologies. In this letter we aim to investigate the problem of cellular traffic prediction over a metropolitan area and propose a deep regression (DR) approach to model its complex spatio-temporal dynamics. DR is instrumental in capturing multi-scale and multi-domain dependences of mobile data by solving an image-to-image regression problem. A parametric relationship between input and expected output is defined and grid search is put in place to isolate and optimize performance. Experimental results confirm that the proposed method achieves a lower prediction error against stateof-the-art algorithms. We validate forecasting performance and stability by using a large public dataset of a European Provider.



قيم البحث

اقرأ أيضاً

Deep learning is gaining increasing popularity for spatiotemporal forecasting. However, prior works have mostly focused on point estimates without quantifying the uncertainty of the predictions. In high stakes domains, being able to generate probabil istic forecasts with confidence intervals is critical to risk assessment and decision making. Hence, a systematic study of uncertainty quantification (UQ) methods for spatiotemporal forecasting is missing in the community. In this paper, we describe two types of spatiotemporal forecasting problems: regular grid-based and graph-based. Then we analyze UQ methods from both the Bayesian and the frequentist point of view, casting in a unified framework via statistical decision theory. Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical and computational trade-offs for different UQ methods: Bayesian methods are typically more robust in mean prediction, while confidence levels obtained from frequentist methods provide more extensive coverage over data variations. Computationally, quantile regression type methods are cheaper for a single confidence interval but require re-training for different intervals. Sampling based methods generate samples that can form multiple confidence intervals, albeit at a higher computational cost.
The internet activity records (IARs) of a mobile cellular network posses significant information which can be exploited to identify the networks efficacy and the mobile users behavior. In this work, we extract useful information from the IAR data and identify a healthy predictability of spatio-temporal pattern within the network traffic. The information extracted is helpful for network operators to plan effective network configuration and perform management and optimization of networks resources. We report experimentation on spatiotemporal analysis of IAR data of the Telecom Italia. Based on this, we present mobile traffic partitioning scheme. Experimental results of the proposed model is helpful in modelling and partitioning of network traffic patterns.
Traffic forecasting has emerged as a core component of intelligent transportation systems. However, timely accurate traffic forecasting, especially long-term forecasting, still remains an open challenge due to the highly nonlinear and dynamic spatial -temporal dependencies of traffic flows. In this paper, we propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) that leverages dynamical directed spatial dependencies and long-range temporal dependencies to improve the accuracy of long-term traffic forecasting. Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies with self-attention mechanism to capture realtime traffic conditions as well as the directionality of traffic flows. Furthermore, different spatial dependency patterns can be jointly modeled with multi-heads attention mechanism to consider diverse relationships related to different factors (e.g. similarity, connectivity and covariance). On the other hand, the temporal transformer is utilized to model long-range bidirectional temporal dependencies across multiple time steps. Finally, they are composed as a block to jointly model the spatial-temporal dependencies for accurate traffic prediction. Compared to existing works, the proposed model enables fast and scalable training over a long range spatial-temporal dependencies. Experiment results demonstrate that the proposed model achieves competitive results compared with the state-of-the-arts, especially forecasting long-term traffic flows on real-world PeMS-Bay and PeMSD7(M) datasets.
Congestion prediction represents a major priority for traffic management centres around the world to ensure timely incident response handling. The increasing amounts of generated traffic data have been used to train machine learning predictors for tr affic, however, this is a challenging task due to inter-dependencies of traffic flow both in time and space. Recently, deep learning techniques have shown significant prediction improvements over traditional models, however, open questions remain around their applicability, accuracy and parameter tuning. This paper brings two contributions in terms of: 1) applying an outlier detection an anomaly adjustment method based on incoming and historical data streams, and 2) proposing an advanced deep learning framework for simultaneously predicting the traffic flow, speed and occupancy on a large number of monitoring stations along a highly circulated motorway in Sydney, Australia, including exit and entry loop count stations, and over varying training and prediction time horizons. The spatial and temporal features extracted from the 36.34 million data points are used in various deep learning architectures that exploit their spatial structure (convolutional neuronal networks), their temporal dynamics (recurrent neuronal networks), or both through a hybrid spatio-temporal modelling (CNN-LSTM). We show that our deep learning models consistently outperform traditional methods, and we conduct a comparative analysis of the optimal time horizon of historical data required to predict traffic flow at different time points in the future. Lastly, we prove that the anomaly adjustment method brings significant improvements to using deep learning in both time and space.
Neural networks with at least two hidden layers are called deep networks. Recent developments in AI and computer programming in general has led to development of tools such as Tensorflow, Keras, NumPy etc. making it easier to model and draw conclusio ns from data. In this work we re-approach non-linear regression with deep learning enabled by Keras and Tensorflow. In particular, we use deep learning to parametrize a non-linear multivariate relationship between inputs and outputs of an industrial sensor with an intent to optimize the sensor performance based on selected key metrics.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا