ﻻ يوجد ملخص باللغة العربية
Let $a: Ito mathbb{R}^3 $ be a real analytic curve satisfying some conditions. In this article, we show that for any real analytic curve $l:Ito mathbb R^3$ close to $a$ (in a sense which is precisely defined in the paper) there exists a translation of $l$, and a minimal surface which contains both $ a $ and the translated $l$.
In this article, we interpolate a given real analytic spacelike curve $a$ in Lorentz-Minkowski space $mathbb{L}^3$ to another real analytic spacelike curve $c$, which is close enough to $a$ in a certain sense, by a maximal surface using inverse funct
In this article we present an elementary introduction to the theory of minimal surfaces in Euclidean spaces $mathbb R^n$ for $nge 3$ by using only elementary calculus of functions of several variables at the level of a typical second-year undergradua
We consider immersions of a Riemann surface into a manifold with $G_2$-holonomy and give criteria for them to be conformal and harmonic, in terms of an associated Gauss map.
We obtain a sharp estimate on the norm of the differential of a harmonic map from the unit disc $mathbb D$ in $mathbb C$ into the unit ball $mathbb B^n$ in $mathbb R^n$, $nge 2$, at any point where the map is conformal. In dimension $n=2$, this gener