ترغب بنشر مسار تعليمي؟ اضغط هنا

Local interpolation for minimal surfaces

137   0   0.0 ( 0 )
 نشر من قبل Rukmini Dey Dr.
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $a: Ito mathbb{R}^3 $ be a real analytic curve satisfying some conditions. In this article, we show that for any real analytic curve $l:Ito mathbb R^3$ close to $a$ (in a sense which is precisely defined in the paper) there exists a translation of $l$, and a minimal surface which contains both $ a $ and the translated $l$.



قيم البحث

اقرأ أيضاً

In this article, we interpolate a given real analytic spacelike curve $a$ in Lorentz-Minkowski space $mathbb{L}^3$ to another real analytic spacelike curve $c$, which is close enough to $a$ in a certain sense, by a maximal surface using inverse funct ion theorem for Banach spaces. Using the same method we also interpolate a given real analytic curve $a$ in Euclidean space $mathbb{E}^3$ to another real analytic curve $c$, which is close enough to $a$ in a certain sense, by a minimal surface. The Bjorling problem and Schwartzs solution to it play an important role.
162 - Franc Forstneric 2021
In this article we present an elementary introduction to the theory of minimal surfaces in Euclidean spaces $mathbb R^n$ for $nge 3$ by using only elementary calculus of functions of several variables at the level of a typical second-year undergradua te analysis course for students of Mathematics at European universities. No prior knowledge of differential geometry is assumed.
150 - Andrew Clarke 2010
We consider immersions of a Riemann surface into a manifold with $G_2$-holonomy and give criteria for them to be conformal and harmonic, in terms of an associated Gauss map.
We obtain a sharp estimate on the norm of the differential of a harmonic map from the unit disc $mathbb D$ in $mathbb C$ into the unit ball $mathbb B^n$ in $mathbb R^n$, $nge 2$, at any point where the map is conformal. In dimension $n=2$, this gener alizes the classical Schwarz-Pick lemma, and for $nge 3$ it gives the optimal Schwarz-Pick lemma for conformal minimal discs $mathbb Dto mathbb B^n$. This implies that conformal harmonic immersions $M to mathbb B^n$ from any hyperbolic conformal surface are distance-decreasing in the Poincar$mathrm{e}$ metric on $M$ and the Cayley-Klein metric on the ball $mathbb B^n$, and the extremal maps are precisely the conformal embeddings of the disc $mathbb D$ onto affine discs in $mathbb B^n$. By using these results, we lay the foundations of the hyperbolicity theory for domains in $mathbb R^n$ based on minimal surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا