ﻻ يوجد ملخص باللغة العربية
We prove that for a quasi-regular semiperfectoid $mathbb{Z}_p^{rm cycl}$-algebra $R$ (in the sense of Bhatt-Morrow-Scholze), the cyclotomic trace map from the $p$-completed $K$-theory spectrum $K(R;mathbb{Z}_p)$ of $R$ to the topological cyclic homology $mathrm{TC}(R;mathbb{Z}_p)$ of $R$ identifies on $pi_2$ with a $q$-deformation of the logarithm.
The problem of expressing an element of K_2(F) in a more explicit form gives rise to many works. To avoid a restrictive condition in a work of Tate, Browkin considered cyclotomic elements as the candidate for the element with an explicit form. In thi
We do three things in this paper: (1) study the analog of localization sequences (in the sense of algebraic $K$-theory of stable $infty$-categories) for additive $infty$-categories, (2) define the notion of nilpotent extensions for suitable $infty$-c
We formulate a conjectural p-adic analogue of Borels theorem relating regulators for higher K-groups of number fields to special values of the corresponding zeta-functions, using syntomic regulators and p-adic L-functions. We also formulate a corresp
In the local, unramified case the determinantal functions associated to the group-ring of a finite group satisfy Galois descent. This note examines the obstructions to Galois determinantal descent in the ramified case.
We observe that the necklace polynomials $M_d(x) = frac{1}{d}sum_{emid d}mu(e)x^{d/e}$ are highly reducible over $mathbb{Q}$ with many cyclotomic factors. Furthermore, the sequence $Phi_d(x) - 1$ of shifted cyclotomic polynomials exhibits a qualitati