ﻻ يوجد ملخص باللغة العربية
Recent work has demonstrated that by monitoring the Real Time Bidding (RTB) protocol, one can estimate the monetary worth of different users for the programmatic advertising ecosystem, even when the so-called winning bids are encrypted. In this paper we describe how to implement the above techniques in a practical and privacy preserving manner. Specifically, we study the privacy consequences of reporting back to a centralized server, features that are necessary for estimating the value of encrypted winning bids. We show that by appropriately modulating the granularity of the necessary information and by scrambling the communication channel to the server, one can increase the privacy performance of the system in terms of K-anonymity. Weve implemented the above ideas on a browser extension and disseminated it to some 200 users. Analyzing the results from 6 months of deployment, we show that the average value of users for the programmatic advertising ecosystem has grown more than 75% in the last 3 years.
Machine learning models are increasingly made available to the masses through public query interfaces. Recent academic work has demonstrated that malicious users who can query such models are able to infer sensitive information about records within t
Online advertising fuels the (seemingly) free internet. However, although users can access most of the web services free of charge, they pay a heavy coston their privacy. They are forced to trust third parties and intermediaries, who not only collect
The prevalence of e-commerce has made detailed customers personal information readily accessible to retailers, and this information has been widely used in pricing decisions. When involving personalized information, how to protect the privacy of such
Environmental understanding capability of $textit{augmented}$ (AR) and $textit{mixed reality}$ (MR) devices are continuously improving through advances in sensing, computer vision, and machine learning. Various AR/MR applications demonstrate such cap
We analyze the value to e-commerce website operators of offering privacy options to users, e.g., of allowing users to opt out of ad targeting. In particular, we assume that site operators have some control over the cost that a privacy option imposes