ﻻ يوجد ملخص باللغة العربية
Photodissociation by ultraviolet radiation is the key destruction pathway for CS in photon-dominated regions, such as diffuse clouds. However, the large uncertainties of photodissociation cross sections and rates of CS, resulting from a lack of both laboratory experiments and theoretical calculations, limit the accuracy of calculated abundances of S-bearing molecules by modern astrochemical models. Here we show a detailed textit{ab initio} study of CS photodissociation. Accurate potential energy curves of CS electronic states were obtained by choosing an active space CAS(8,10) in MRCI+Q/aug-cc-pV(5+d)Z calculation with additional diffuse functions, with a focus on the (B) and (C,^1Sigma^+) states. Cross sections for both direct photodissociation and predissociation from the vibronic ground state were calculated by applying the coupled-channel method. We found that the (C-X) ((0-0)) transition has extremely strong absorption due to a large transition dipole moment in the Franck-Condon region and the upper state is resonant with several triplet states via spin-orbit couplings, resulting in predissociation to the main atomic products C ((^3P)) and S ((^1D)). Our new calculations show the photodissociation rate under the standard interstellar radiation field is (2.9ee{-9}),s(^{-1}), with a 57% contribution from (C-X) ((0-0)) transition. This value is larger than that adopted by the Leiden photodissociation and photoionization database by a factor of 3.0. Our accurate textit{ab initio} calculations will allow more secure determination of S-bearing molecules in astrochemical models.
Accurate photodissociation cross sections have been computed for transitions from the X $^1Sigma^+$ ground electronic state of CS to six low-lying excited electronic states. New ab initio potential curves and transition dipole moment functions have b
Radium compounds have attracted recently considerable attention due to both development of experimental techniques for high-precision laser spectroscopy of molecules with short-lived nuclei and amenability of certain radium compounds for direct cooli
First-principles calculations using density functional theory based on norm-conserving pseudopotentials have been performed to investigate the Cs adsorption on the Si(001) surface for 0.5 and 1 ML coverages. We found that the saturation coverage corr
Elemental 2D materials exhibit intriguing heat transport and phononic properties. Here we have investigated the lattice thermal conductivity of newly proposed arsenene, the 2D honeycomb structure of arsenic, using {it ab initio} calculations. Solving
This work reports on the elastic and electronic properties of the newly discovered superconductor Th2NiC2 (A .Machado, et al., Supercond. Sci. Technol. 25 (2012) 045010) as obtained within ab initio calculations. We found that Th2NiC2 is mechanically