ﻻ يوجد ملخص باللغة العربية
In this work, we propose a novel approach for generating videos of the six basic facial expressions given a neutral face image. We propose to exploit the face geometry by modeling the facial landmarks motion as curves encoded as points on a hypersphere. By proposing a conditional version of manifold-valued Wasserstein generative adversarial network (GAN) for motion generation on the hypersphere, we learn the distribution of facial expression dynamics of different classes, from which we synthesize new facial expression motions. The resulting motions can be transformed to sequences of landmarks and then to images sequences by editing the texture information using another conditional Generative Adversarial Network. To the best of our knowledge, this is the first work that explores manifold-valued representations with GAN to address the problem of dynamic facial expression generation. We evaluate our proposed approach both quantitatively and qualitatively on two public datasets; Oulu-CASIA and MUG Facial Expression. Our experimental results demonstrate the effectiveness of our approach in generating realistic videos with continuous motion, realistic appearance and identity preservation. We also show the efficiency of our framework for dynamic facial expressions generation, dynamic facial expression transfer and data augmentation for training improved emotion recognition models.
In this paper, we propose a novel conditional-generative-adversarial-nets-based image captioning framework as an extension of traditional reinforcement-learning (RL)-based encoder-decoder architecture. To deal with the inconsistent evaluation problem
Generative Adversarial Networks are proved to be efficient on various kinds of image generation tasks. However, it is still a challenge if we want to generate images precisely. Many researchers focus on how to generate images with one attribute. But
Image generation has raised tremendous attention in both academic and industrial areas, especially for the conditional and target-oriented image generation, such as criminal portrait and fashion design. Although the current studies have achieved prel
In this paper, we explore the task of generating photo-realistic face images from lines. Previous methods based on conditional generative adversarial networks (cGANs) have shown their power to generate visually plausible images when a conditional ima
When trained on multimodal image datasets, normal Generative Adversarial Networks (GANs) are usually outperformed by class-conditional GANs and ensemble GANs, but conditional GANs is restricted to labeled datasets and ensemble GANs lack efficiency. W