ﻻ يوجد ملخص باللغة العربية
The correlation observed between monochromatic X-ray and UV luminosities in radiatively-efficient active galactic nuclei (AGN) lacks a clear theoretical explanation despite being used for many applications. Such a correlation, with its small intrinsic scatter and its slope that is smaller than unity in log space, represents the compelling evidence that a mechanism regulating the energetic interaction between the accretion disk and the X-ray corona must be in place. This ensures that going from fainter to brighter sources the coronal emission increases less than the disk emission. We discuss here a self-consistently coupled disk-corona model that can identify this regulating mechanism in terms of modified viscosity prescriptions in the accretion disk. The model predicts a lower fraction of accretion power dissipated in the corona for higher accretion states. We then present a quantitative observational test of the model using a reference sample of broad-line AGN and modeling the disk-corona emission for each source in the $L_X-L_{UV}$ plane. We used the slope, normalization, and scatter of the observed relation to constrain the parameters of the theoretical model. For non-spinning black holes and static coronae, we find that the accretion prescriptions that match the observed slope of the $L_X-L_{UV}$ relation produce X-rays that are too weak with respect to the normalization of the observed relation. Instead, considering moderately-outflowing Comptonizing coronae and/or a more realistic high-spinning black hole population significantly relax the tension between the strength of the observed and modeled X-ray emission, while also predicting very low intrinsic scatter in the $L_X-L_{UV}$ relation. In particular, this latter scenario traces a known selection effect of flux-limited samples that preferentially select high-spinning, hence brighter, sources.
The Broad Emission Lines (BELs) in spectra of type 1 Active Galactic Nuclei (AGN) can be very complex, indicating a complex Broad Line Region (BLR) geometry. According to the standard unification model one can expect an accretion disk around a superm
We present the results from a joint Suzaku/NuSTAR broad-band spectral analysis of 3C 390.3. The high quality data enables us to clearly separate the primary continuum from the reprocessed components allowing us to detect a high energy spectral cut-of
We compile a blue AGN sample from SDSS and investigate the ratio of hard X-ray to bolometric luminosity in dependence on Eddington ratio and black hole mass. Our sample comprises 240 radio-quiet Seyfert 1 galaxies and QSOs. We find that the fraction
The truncation of an optically thick, geometrically thin accretion disk is investigated in the context of low luminosity AGN (LLAGN). We generalize the disk evaporation model used in the interpretative framework of black hole X-ray binaries by includ
Changing-look quasars are a new class of highly variable active galactic nuclei that have changed their spectral type over surprisingly short timescales of just a few years. The origin of this phenomenon is debated, but is likely to reflect some chan