ﻻ يوجد ملخص باللغة العربية
Stochastic differential equation mixed-effects models (SDEMEMs) are flexible hierarchical models that are able to account for random variability inherent in the underlying time-dynamics, as well as the variability between experimental units and, optionally, account for measurement error. Fully Bayesian inference for state-space SDEMEMs is performed, using data at discrete times that may be incomplete and subject to measurement error. However, the inference problem is complicated by the typical intractability of the observed data likelihood which motivates the use of sampling-based approaches such as Markov chain Monte Carlo. A Gibbs sampler is proposed to target the marginal posterior of all parameter values of interest. The algorithm is made computationally efficient through careful use of blocking strategies and correlated pseudo-marginal Metropolis-Hastings steps within the Gibbs scheme. The resulting methodology is flexible and is able to deal with a large class of SDEMEMs. The methodology is demonstrated on three case studies, including tumor growth dynamics and neuronal data. The gains in terms of increased computational efficiency are model and data dependent, but unless bespoke sampling strategies requiring analytical derivations are possible for a given model, we generally observe an efficiency increase of one order of magnitude when using correlated particle methods together with our blocked-Gibbs strategy.
Motivated by penalized likelihood maximization in complex models, we study optimization problems where neither the function to optimize nor its gradient have an explicit expression, but its gradient can be approximated by a Monte Carlo technique. We
Stochastic differential equations (SDEs) are established tools to model physical phenomena whose dynamics are affected by random noise. By estimating parameters of an SDE intrinsic randomness of a system around its drift can be identified and separat
We consider Bayesian inference for stochastic differential equation mixed effects models (SDEMEMs) exemplifying tumor response to treatment and regrowth in mice. We produce an extensive study on how a SDEMEM can be fitted using both exact inference b
An ordinary differential equation (ODE) model, whose regression curves are a set of solution curves for some ODEs, poses a challenge in parameter estimation. The challenge, due to the frequent absence of analytic solutions and the complicated likelih
This article addresses the problem of efficient Bayesian inference in dynamic systems using particle methods and makes a number of contributions. First, we develop a correlated pseudo-marginal (CPM) approach for Bayesian inference in state space (SS)