ﻻ يوجد ملخص باللغة العربية
Following Britz, Johnsen, Mayhew and Shiromoto, we consider demi-ma-troids as a(nother) natural generalization of matroids. As they have shown, demi-ma-troids are the appropriate combinatorial objects for studying Weis duality. Our results here apport further evidence about the trueness of that observation. We define the Hamming polynomial of a demimatroid $M$, denoted by $W(x,y,t)$, as a generalization of the extended Hamming weight enumerator of a matroid. The polynomial $W(x,y,t)$ is a specialization of the Tutte polynomial of $M$, and actually is equivalent to it. Guided by work of Johnsen, Roksvold and Verdure for matroids, we prove that Betti numbers of a demimatroid and its elongations determine the Hamming polynomial. Our results may be applied to simplicial complexes since in a canonical way they can be viewed as demimatroids. Furthermore, following work of Brylawski and Gordon, we show how demimatroids may be generalized one step further, to combinatroids. A combinatroid, or Brylawski structure, is an integer valued function $rho$, defined over the power set of a finite ground set, satisfying the only condition $rho(emptyset)=0$. Even in this extreme generality, we will show that many concepts and invariants in coding theory can be carried on directly to combinatroids, say, Tutte polynomial, characteristic polynomial, MacWilliams identity, extended Hamming polynomial, and the $r$-th generalized Hamming polynomial; this last one, at least conjecturelly, guided by the work of Jurrius and Pellikaan for linear codes. All this largely extends the notions of deletion, contraction, duality and codes to non-matroidal structures.
Many hard combinatorial problems can be modeled by a system of polynomial equations. N. Alon coined the term polynomial method to describe the use of nonlinear polynomials when solving combinatorial problems. We continue the exploration of the polyno
The profile of a relational structure $R$ is the function $varphi_R$ which counts for every integer $n$ the number, possibly infinite, $varphi_R(n)$ of substructures of $R$ induced on the $n$-element subsets, isomorphic substructures being identified
In this paper we find the second generalized Hamming weight of some evaluation codes arising from a projective torus, and it allows to compute the second generalized Hamming weight of the codes parameterized by the edges of any complete bipartite gra
We study affine cartesian codes, which are a Reed-Muller type of evaluation codes, where polynomials are evaluated at the cartesian product of n subsets of a finite field F_q. These codes appeared recently in a work by H. Lopez, C. Renteria-Marquez a
$H_q(n,d)$ is defined as the graph with vertex set ${mathbb Z}_q^n$ and where two vertices are adjacent if their Hamming distance is at least $d$. The chromatic number of these graphs is presented for various sets of parameters $(q,n,d)$. For the $4$