ﻻ يوجد ملخص باللغة العربية
Summarizing large-scaled directed graphs into small-scale representations is a useful but less studied problem setting. Conventional clustering approaches, which based on Min-Cut-style criteria, compress both the vertices and edges of the graph into the communities, that lead to a loss of directed edge information. On the other hand, compressing the vertices while preserving the directed edge information provides a way to learn the small-scale representation of a directed graph. The reconstruction error, which measures the edge information preserved by the summarized graph, can be used to learn such representation. Compared to the original graphs, the summarized graphs are easier to analyze and are capable of extracting group-level features which is useful for efficient interventions of population behavior. In this paper, we present a model, based on minimizing reconstruction error with non-negative constraints, which relates to a Max-Cut criterion that simultaneously identifies the compressed nodes and the directed compressed relations between these nodes. A multiplicative update algorithm with column-wise normalization is proposed. We further provide theoretical results on the identifiability of the model and on the convergence of the proposed algorithms. Experiments are conducted to demonstrate the accuracy and robustness of the proposed method.
We develop a Bregman proximal gradient method for structure learning on linear structural causal models. While the problem is non-convex, has high curvature and is in fact NP-hard, Bregman gradient methods allow us to neutralize at least part of the
A graph generative model defines a distribution over graphs. One type of generative model is constructed by autoregressive neural networks, which sequentially add nodes and edges to generate a graph. However, the likelihood of a graph under the autor
The Ising antiferromagnet is an important statistical physics model with close connections to the {sc Max Cut} problem. Combining spatial mixing arguments with the method of moments and the interpolation method, we pinpoint the replica symmetry break
In this paper, we consider the problem of designing cut sparsifiers and sketches for directed graphs. To bypass known lower bounds, we allow the sparsifier/sketch to depend on the balance of the input graph, which smoothly interpolates between undire
In this article, we propose a new hypothesis testing method for directed acyclic graph (DAG). While there is a rich class of DAG estimation methods, there is a relative paucity of DAG inference solutions. Moreover, the existing methods often impose s