The effect of valley, spin and band nesting on the electronic properties of gated quantum dots in a single layer of transition metal dichalcogenides (TMDCs)


الملخص بالإنكليزية

We present here results of atomistic theory of electrons confined by metallic gates in a single layer of transition metal dichalcogenides. The electronic states are described by the tight-binding model and computed using a computational box including up to million atoms with periodic boundary conditions and parabolic confining potential due to external gates embedded in it. With this methodology applied to MoS2, we find a twofold degenerate energy spectrum of electrons confined in the two non-equivalent K-valleys by the metallic gates as well as six-fold degenerate spectrum associated with Q-valleys. We compare the electron spectrum with the energy levels of electrons confined in GaAs/GaAlAs and in self-assembled quantum dots. We discuss the role of spin splitting and topological moments on the K and Q valley electronic states in quantum dots with sizes comparable to experiment.

تحميل البحث