ﻻ يوجد ملخص باللغة العربية
Context. This is the second work dedicated to the observed parallelism between galaxy clusters and early-type galaxies. The focus is on the distribution of these systems in the scaling relations (SRs) observed when effective radii, effective surface brightness, total luminosities and velocity dispersions are mutually correlated. Aims. Using the data of the Illustris simulation we try to speculate on the origin of the observed SRs. Methods. We compare the observational SRs extracted from the database of the WIde-field Nearby Galaxy-cluster Survey (WINGS) with the relevant parameters coming from the Illustris simulations. Then we use the simulated data at different redshift to infer the evolution of the SRs. Results. The comparison demonstrate that galaxy clusters (GCs) at z~0 follow the same log(L)-log(sigma) relation of early-type galaxies (ETGs) and that both in the log(Ie)-log(Re) and log(Re)-log(M*) planes the distribution of GCs is along the sequence defined by the brightest and massive early-type galaxies (BCGs). The Illustris simulation reproduces the tails of the massive galaxies visible both in the log(Ie)-log(Re) and log(Re)-log(M*) planes, but fail to give the correct estimate of the effective radii of the dwarf galaxies that appear too large and those of GCs that are too small. The evolution of the SRs up to z=4 permits to reveal the complex evolutionary paths of galaxies in the SRs and indicate that the line marking the Zone of Exclusion (ZoE), visible both in the log(Ie)-log(Re) and log(Re)-log(M*) planes, is the trend followed by virialized and passively evolving systems. Conclusions. We speculate that the observed SRs originate from the intersection of the virial theorem and a relation L=L_0 x sigma^beta where the luminosities depend on the star formation history.
Context. This is the third study of a series dedicated to the observed parallelism of properties between Galaxy Clusters and Groups(GCGs) and early-type galaxies (ETGs). Aims. Here we investigate the physical origin of the Mass-Radius Relation (MRR).
We have analyzed the parallelism between the properties of galaxy clusters and early-type galaxies (ETGs) by looking at the similarity between their light profiles. We find that the equivalent luminosity profiles of all these systems in the vfilt ban
Several dedicated surveys focusing on early-type galaxies (ETGs) reveal that significant fractions of them are detectable in all interstellar medium phases studied to date. We select ETGs from the Herschel Reference Survey that have both far-infrared
X-ray luminosity, temperature, gas mass, total mass, and their scaling relations are derived for 94 early-type galaxies using archival $Chandra$ X-ray Observatory observations. Consistent with earlier studies, the scaling relations, $L_X propto T^{4.
I review our understanding of classic dynamical scaling relations, relating luminosity, size and kinematics of early-type galaxies. Using unbiased determinations of galaxy mass profiles from stellar dynamical models, a simple picture has emerged in w