ﻻ يوجد ملخص باللغة العربية
A light higgsino is strongly favored by the naturalness, while as a dark matter candidate it is usually under-abundant. We consider the higgsino production in a non-standard history of the universe, caused by a scalar field with an initially displaced vacuum. We find that given a proper reheating temperature induced by the scalar decay, a light higgsino could provide the correct dark matter relic abundance. On the other hand, a sub-TeV higgsino dark matter, once observed, would be a strong hint of the non-standard thermal history of the universe.
The standard theoretical estimation of the thermal dark matter abundance may be significantly altered if properties of dark matter particles in the early universe and at the present cosmological epoch differ. This may happen if, e.g., a cosmological
The requirement of electroweak naturalness in supersymmetric (SUSY) models of particle physics necessitates light higgsinos not too far from the weak scale characterized by m(weak)~ m(W,Z,h)~100 GeV. On the other hand, LHC Higgs mass measurements and
Once dark matter has been discovered and its particle physics properties have been determined, a crucial question rises concerning how it was produced in the early Universe. If its thermally averaged annihilation cross section is in the ballpark of f
In an expanding universe the vacuum energy density rho_{Lambda} is expected to be a dynamical quantity. In quantum field theory in curved space-time rho_{Lambda} should exhibit a slow evolution, determined by the expansion rate of the universe H. Rec
A large part of the mSUGRA parameter space satisfying the WMAP constraint on the dark matter relic density corresponds to a higgsino LSP of mass $simeq 1$ TeV. We find a promising signal for this LSP at CLIC, particularly with polarized electron and