Distinct letters $x$ and $y$ alternate in a word $w$ if after deleting in $w$ all letters but the copies of $x$ and $y$ we either obtain a word of the form $xyxycdots$ (of even or odd length) or a word of the form $yxyxcdots$ (of even or odd length). A graph $G=(V,E)$ is word-representable if there exists a word $w$ over the alphabet $V$ such that letters $x$ and $y$ alternate in $w$ if and only if $xy$ is an edge in $E$. In this paper we initiate the study of word-representable Toeplitz graphs, which are Riordan graphs of the Appell type. We prove that several general classes of Toeplitz graphs are word-representable, and we also provide a way to construct non-word-representable Toeplitz graphs. Our work not only merges the theories of Riordan matrices and word-representable graphs via the notion of a Riordan graph, but also it provides the first systematic study of word-representability of graphs defined via patterns in adjacency matrices. Moreover, our paper introduces the notion of an infinite word-representable Riordan graph and gives several general examples of such graphs. It is the first time in the literature when the word-representability of infinite graphs is discussed.