ترغب بنشر مسار تعليمي؟ اضغط هنا

When Do Complex Transport Dynamics Arise in Natural Groundwater Systems?

50   0   0.0 ( 0 )
 نشر من قبل Guy Metcalfe
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent paper (Trefry et al., 2019) we showed that the interplay of aquifer heterogeneity and poroelasticity can produce complex transport in tidally forced aquifers, with significant implications for solute transport, mixing and reaction. However, what was unknown was how broadly these transport dynamics can arise in natural groundwater systems, and how these dynamics depend upon the aquifer properties, tidal and regional flow characteristics. In this study we answer these questions through parametric studies of these governing properties. We uncover the mechanisms that govern complex transport dynamics and the bifurcations between transport structures with changes in the governing parameters, and we determine the propensity for complex dynamics to occur in natural aquifer systems. These results clearly demonstrate that complex transport structures and dynamics may arise in natural tidally forced aquifers around the world, producing solute transport and mixing behaviour that is very different to that of the conventional Darcy flow picture. Key Points: * Transient Darcy flows can generate complex transport dynamics in heterogeneous compressible aquifers. * This complex transport can trap dispersing solutes for many years. * Global tidal maps indicate widespread potential for complex transport dynamics in coastal zones.



قيم البحث

اقرأ أيضاً

Although steady, isotropic Darcy flows are inherently laminar and non-mixing, it is well understood that transient forcing via engineered pumping schemes can induce rapid, chaotic mixing in groundwater. In this study we explore the propensity for suc h mixing to arise in natural groundwater systems subject to cyclical forcings, e.g. tidal or seasonal influences. Using a conventional linear groundwater flow model subject to tidal forcing, we show that under certain conditions these flows generate Lagrangian transport and mixing phenomena (chaotic advection) near the tidal boundary. We show that aquifer heterogeneity, storativity, and forcing magnitude cause reversals in flow direction over the forcing cycle which, in turn, generate coherent Lagrangian structures and chaos. These features significantly augment fluid mixing and transport, leading to anomalous residence time distributions, flow segregation, and the potential for profoundly altered reaction kinetics. We define the dimensionless parameter groups which govern this phenomenon and explore these groups in connection with a set of well-characterised coastal systems. The potential for Lagrangian chaos to be present near discharge boundaries must be recognized and assessed in field studies.
Transport and mixing of scalar quantities in fluid flows is ubiquitous in industry and Nature. Turbulent flows promote efficient transport and mixing by their inherent randomness. Laminar flows lack such a natural mixing mechanism and efficient trans port is far more challenging. However, laminar flow is essential to many problems and insight into its transport characteristics of great importance. Laminar transport, arguably, is best described by the Lagrangian fluid motion (`advection) and the geometry, topology and coherence of fluid trajectories. Efficient laminar transport being equivalent to `chaotic advection is a key finding of this approach. The Lagrangian framework enables systematic analysis and design of laminar flows. However, the gap between scientific insights into Lagrangian transport and technological applications is formidable primarily for two reasons. First, many studies concern two-dimensional (2D) flows yet the real world is three dimensional (3D). Second, Lagrangian transport is typically investigated for idealised flows yet practical relevance requires studies on realistic 3D flows. The present review aims to stimulate further development and utilisation of know-how on 3D Lagrangian transport and its dissemination to practice. To this end 3D practical flows are categorised into canonical problems. First, to expose the diversity of Lagrangian transport and create awareness of its broad relevance. Second, to enable knowledge transfer both within and between scientific disciplines. Third, to reconcile practical flows with fundamentals on Lagrangian transport and chaotic advection. This may be a first incentive to structurally integrate the `Lagrangian mindset into the analysis and design of 3D practical flows.
We present theory and experiments demonstrating the existence of invariant manifolds that impede the motion of microswimmers in two-dimensional fluid flows. One-way barriers are apparent in a hyperbolic fluid flow that block the swimming of both smoo th-swimming and run-and-tumble emph{Bacillus subtilis} bacteria. We identify key phase-space structures, called swimming invariant manifolds (SwIMs), that serve as separatrices between different regions of long-time swimmer behavior. When projected into $xy$-space, the edges of the SwIMs act as one-way barriers, consistent with the experiments.
122 - J. Kuhnen , B. Song , D. Scarselli 2017
Turbulence is the major cause of friction losses in transport processes and it is responsible for a drastic drag increase in flows over bounding surfaces. While much effort is invested into developing ways to control and reduce turbulence intensities , so far no methods exist to altogether eliminate turbulence if velocities are sufficiently large. We demonstrate for pipe flow that appropriate distortions to the velocity profile lead to a complete collapse of turbulence and subsequently friction losses are reduced by as much as 95%. Counterintuitively, the return to laminar motion is accomplished by initially increasing turbulence intensities or by transiently amplifying wall shear. The usual measures of turbulence levels, such as the Reynolds number (Re) or shear stresses, do not account for the subsequent relaminarization. Instead an amplification mechanism measuring the interaction between eddies and the mean shear is found to set a threshold below which turbulence is suppressed beyond recovery.
The transition to turbulence in many shear flows proceeds along two competing routes, one linked with finite-amplitude disturbances and the other one originating from a linear instability, as in e.g. boundary layer flows. The dynamical systems concep t of edge manifold has been suggested in the subcritical case to explain the partition of the state space of the system. This investigation is devoted to the evolution of the edge manifold when a linear stability is added in such subcritical systems, a situation poorly studied despite its prevalence in realistic fluid flows. In particular the fate of the edge state as a mediator of transition is unclear. A deterministic three-dimensional model is suggested, parametrised by the linear instability growth rate. The edge manifold evolves topologically, via a global saddle-loop bifurcation, from the separatrix between two attraction basins to the mediator between two transition routes. For larger instability rates, the stable manifold of the saddle point increases in codimension from 1 to 2 after an additional local saddle node bifurcation, causing the collapse of the edge manifold. As the growth rate is increased, three different regimes of this model are identified, each one associated with a flow case from the recent hydrodynamic literature. A simple nonautonomous generalisation of the model is also suggested in order to capture the complexity of spatially developing flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا