ﻻ يوجد ملخص باللغة العربية
The conventional outage in wireless communication systems is caused by the deterioration of the wireless communication link, i.e., the received signal power is less than the minimum received signal power. Is there a possibility that the outage occurs in wireless communication systems with a good channel state? Based on both communication and heat transfer theories, a power-consumption outage in the wireless communication between millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) base stations (BSs) and smartphones has been modeled and analyzed. Moreover, the total transmission time model with respect to the number of power-consumption outages is derived for mmWave massive MIMO communication systems. Simulation results indicate that the total transmission time is extended by the power-consumption outage, which deteriorates the average transmission rate of mmWave massive MIMO BSs.
Prior Internet designs encompassed the fixed, mobile and lately the things Internet. In a natural evolution to these, the notion of the Tactile Internet is emerging which allows one to transmit touch and actuation in real-time. With voice and data co
One of the limitations of wireless sensor nodes is their inherent limited energy resource. Besides maximizing the lifetime of the sensor node, it is preferable to distribute the energy dissipated throughout the wireless sensor network in order to min
Emerging 5G and next generation 6G wireless are likely to involve myriads of connectivity, consisting of a huge number of relatively smaller cells providing ultra-dense coverage. Guaranteeing seamless connectivity and service level agreements in such
Recent years have witnessed the proliferation of Low-power Wide Area Networks (LPWANs) in the unlicensed band for various Internet-of-Things (IoT) applications. Due to the ultra-low transmission power and long transmission duration, LPWAN devices ine
To cope with the explosive traffic growth of next-generation wireless communications, it is necessary to design next-generation multiple access techniques that can provide higher spectral efficiency as well as larger-scale connectivity. As a promisin