ﻻ يوجد ملخص باللغة العربية
Nodal semimetals (e.g. Dirac, Weyl and nodal-line semimetals, graphene, etc.) and systems of pinned particles with power-law interactions (trapped ultracold ions, nitrogen defects in diamonds, spins in solids, etc.) are presently at the centre of attention of large communities of researchers working in condensed-matter and atomic, molecular and optical physics. Although seemingly unrelated, both classes of systems are abundant with novel fundamental thermodynamic and transport phenomena. In this paper, we demonstrate that low-energy field theories of quasiparticles in semimetals may be mapped exactly onto those of pinned particles with excitations which exhibit power-law hopping. The duality between the two classes of systems, which we establish, allows one to describe the transport and thermodynamics of each class of systems using the results established for the other class. In particular, using the duality mapping, we establish the existence of a novel class of disorder-driven transitions in systems with the power-law hopping $propto1/r^gamma$ of excitations with $d/2<gamma<d$, different from the conventional Anderson-localisation transition. Non-Anderson disorder-driven transitions have been studied broadly for nodal semimetals, but have been unknown, to our knowledge, for systems with long-range hopping (interactions) with $gamma<d$.
Systems with the power-law quasiparticle dispersion $epsilon_{bf k}propto k^alpha$ exhibit non-Anderson disorder-driven transitions in dimensions $d>2alpha$, as exemplified by Weyl semimetals, 1D and 2D arrays of ultracold ions with long-range intera
The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, $1/r^a$. For randomly spaced particles, these models present an effective peculiar disorder that leads to s
Internodal dynamics of quasiparticles in Weyl semimetals manifest themselves in hydrodynamic, transport and thermodynamic phenomena and are essential for potential valleytronic applications of these systems. In an external magnetic field, coherent qu
Amorphous solids or glasses are known to exhibit stretched-exponential decay over broad time intervals in several of their macroscopic observables: intermediate scattering function, dielectric relaxation modulus, time-elastic modulus etc. This behavi
Charge and thermal conductivities are the most important parameters of carbon nanomaterials as candidates for future electronics. In this paper we address the effects of Anderson type disorder in long semiconductor carbon nanotubes (CNTs) to electron