ﻻ يوجد ملخص باللغة العربية
We develop the effective field theory of diffusive Nambu-Goldstone (NG) modes associated with spontaneous internal symmetry breaking taking place in nonequilibrium open systems. The effective Lagrangian describing semi-classical dynamics of the NG modes is derived and matching conditions for low-energy coefficients are also investigated. Due to new terms peculiar to open systems, the associated NG modes show diffusive gapless behaviors in contrast to the propagating NG mode in closed systems. We demonstrate two typical situations relevant to the condensed matter physics and high-energy physics, where diffusive type-A or type-B NG modes appear.
We study numerically the spatial dynamics of light in periodic square lattices in the presence of a Kerr term, emphasizing the peculiarities stemming from the nonlinearity. We find that, under rather general circumstances, the phase pattern of the st
We study the null space degeneracy of open quantum systems with multiple non-Abelian, strong symmetries. By decomposing the Hilbert space representation of these symmetries into an irreducible representation involving the direct sum of multiple, comm
Nambu-Goldstone modes in immiscible two-component Bose-Einstein condensates are studied theoretically. In a uniform system, a flat domain wall is stabilized and then the translational invariance normal to the wall is spontaneously broken in addition
A breathing mode in a Hamiltonian system is a function on the phase space whose evolution is exactly periodic for all solutions of the equations of motion. Such breathing modes are familiar from nonlinear dynamics in harmonic traps or anti-de Sitter
We study the concomitant breaking of spatial translations and dilatations in Ginzburg-Landau-like models, where the dynamics responsible for the symmetry breaking is described by an effective Mexican hat potential for spatial gradients. We show that