ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Lagrangian for Nambu-Goldstone modes in nonequilibrium open systems

105   0   0.0 ( 0 )
 نشر من قبل Masaru Hongo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop the effective field theory of diffusive Nambu-Goldstone (NG) modes associated with spontaneous internal symmetry breaking taking place in nonequilibrium open systems. The effective Lagrangian describing semi-classical dynamics of the NG modes is derived and matching conditions for low-energy coefficients are also investigated. Due to new terms peculiar to open systems, the associated NG modes show diffusive gapless behaviors in contrast to the propagating NG mode in closed systems. We demonstrate two typical situations relevant to the condensed matter physics and high-energy physics, where diffusive type-A or type-B NG modes appear.



قيم البحث

اقرأ أيضاً

We study numerically the spatial dynamics of light in periodic square lattices in the presence of a Kerr term, emphasizing the peculiarities stemming from the nonlinearity. We find that, under rather general circumstances, the phase pattern of the st able ground state depends on the character of the nonlinearity: the phase is spatially uniform if it is defocusing whereas in the focusing case, it presents a chess board pattern, with a difference of $pi$ between neighboring sites. We show that the lowest lying perturbative excitations can be described as perturbations of the phase and that finite-sized structures can act as tunable metawaveguides for them. The tuning is made by varying the intensity of the light that, because of the nonlinearity, affects the dynamics of the phase fluctuations. We interpret the results using methods of condensed matter physics, based on an effective description of the optical system. This interpretation sheds new light on the phenomena, facilitating the understanding of individual systems and leading to a framework for relating different problems with the same symmetry. In this context, we show that the perturbative excitations of the phase are Nambu-Goldstone bosons of a spontaneously broken $U(1)$ symmetry.
We study the null space degeneracy of open quantum systems with multiple non-Abelian, strong symmetries. By decomposing the Hilbert space representation of these symmetries into an irreducible representation involving the direct sum of multiple, comm uting, invariant subspaces we derive a tight lower bound for the stationary state degeneracy. We apply these results within the context of open quantum many-body systems, presenting three illustrative examples: a fully-connected quantum network, the XXX Heisenberg model and the Hubbard model. We find that the derived bound, which scales at least cubically in the system size the $SU(2)$ symmetric cases, is often saturated. Moreover, our work provides a theory for the systematic block-decomposition of a Liouvillian with non-Abelian symmetries, reducing the computational difficulty involved in diagonalising these objects and exposing a natural, physical structure to the steady states - which we observe in our examples.
Nambu-Goldstone modes in immiscible two-component Bose-Einstein condensates are studied theoretically. In a uniform system, a flat domain wall is stabilized and then the translational invariance normal to the wall is spontaneously broken in addition to the breaking of two U(1) symmetries in the presence of two complex order parameters. We clarify properties of the low-energy excitations and identify that there exist two Nambu-Goldstone modes: in-phase phonon with a linear dispersion and ripplon with a fractional dispersion. The signature of the characteristic dispersion can be verified in segregated condensates in a harmonic potential.
68 - Oleg Evnin 2019
A breathing mode in a Hamiltonian system is a function on the phase space whose evolution is exactly periodic for all solutions of the equations of motion. Such breathing modes are familiar from nonlinear dynamics in harmonic traps or anti-de Sitter spacetimes, with applications to the physics of cold atomic gases, general relativity and high-energy physics. We discuss the implications of breathing modes in weakly nonlinear regimes, assuming that both the Hamiltonian and the breathing mode are linear functions of a coupling parameter, taken to be small. For a linear system, breathing modes dictate resonant relations between the normal frequencies. These resonant relations imply that arbitrarily small nonlinearities may produce large effects over long times. The leading effects of the nonlinearities in this regime are captured by the corresponding effective resonant system. The breathing mode of the original system translates into an exactly conserved quantity of this effective resonant system under simple assumptions that we explicitly specify. If the nonlinearity in the Hamiltonian is quartic in the canonical variables, as is common in many physically motivated cases, further consequences result from the presence of the breathing modes, and some nontrivial explicit solutions of the effective resonant system can be constructed. This structure explains in a uniform fashion a series of results in the recent literature where this type of dynamics is realized in specific Hamiltonian systems, and predicts other situations of interest where it should emerge.
We study the concomitant breaking of spatial translations and dilatations in Ginzburg-Landau-like models, where the dynamics responsible for the symmetry breaking is described by an effective Mexican hat potential for spatial gradients. We show that there are fractonic modes with either subdimensional propagation or no propagation altogether, namely, immobility. Such class of effective field theories encompasses instances of helical superfluids and meta-fluids, where fractons can be connected to an emergent symmetry under higher moment charges, leading in turns to the trivialization of some elastic coefficients. The introduction of a finite charge density alters the mobility properties of fractons and leads to a competition between the chemical potential and the superfluid velocity in determining the gap of the dilaton. The mobility of fractons can also be altered at zero density upon considering additional higher-derivative terms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا