ترغب بنشر مسار تعليمي؟ اضغط هنا

Some Polycubes Have No Edge Zipper Unfolding

58   0   0.0 ( 0 )
 نشر من قبل Joseph O'Rourke
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

It is unknown whether every polycube (polyhedron constructed by gluing cubes face-to-face) has an edge unfolding, that is, cuts along edges of the cubes that unfolds the polycube to a single nonoverlapping polygon in the plane. Here we construct polycubes that have no *edge zipper unfolding* where the cut edges are further restricted to form a path.



قيم البحث

اقرأ أيضاً

119 - Alexey S Tarasov 2008
There exists a surface of a convex polyhedron P and a partition L of P into geodesic convex polygons such that there are no connected edge unfoldings of P without self-intersections (whose spanning tree is a subset of the edge skeleton of L).
A convex polyhedron $P$ is $k$-equiprojective if all of its orthogonal projections, i.e., shadows, except those parallel to the faces of $P$ are $k$-gon for some fixed value of $k$. Since 1968, it is an open problem to construct all equiprojective po lyhedra. Recently, Hasan and Lubiw [CGTA 40(2):148-155, 2008] have given a characterization of equiprojective polyhedra. Based on their characterization, in this paper we discover some new equiprojective polyhedra by cutting and gluing existing polyhedra.
118 - Joseph ORourke 2019
Starting with the unsolved Durers problem of edge-unfolding a convex polyhedron to a net, we specialize and generalize (a) the types of cuts permitted, and (b) the polyhedra shapes, to highlight both advances established and which problems remain open.
K{a}rolyi, Pach, and T{o}th proved that every 2-edge-colored straight-line drawing of the complete graph contains a monochromatic plane spanning tree. It is open if this statement generalizes to other classes of drawings, specifically, to simple draw ings of the complete graph. These are drawings where edges are represented by Jordan arcs, any two of which intersect at most once. We present two partial results towards such a generalization. First, we show that the statement holds for cylindrical simple drawings. (In a cylindrical drawing, all vertices are placed on two concentric circles and no edge crosses either circle.) Second, we introduce a relaxation of the problem in which the graph is $k$-edge-colored, and the target structure must be hypochromatic, that is, avoid (at least) one color class. In this setting, we show that every $lceil (n+5)/6rceil$-edge-colored monotone simple drawing of $K_n$ contains a hypochromatic plane spanning tree. (In a monotone drawing, every edge is represented as an $x$-monotone curve.)
Generative adversarial networks (GANs) represent a zero-sum game between two machine players, a generator and a discriminator, designed to learn the distribution of data. While GANs have achieved state-of-the-art performance in several benchmark lear ning tasks, GAN minimax optimization still poses great theoretical and empirical challenges. GANs trained using first-order optimization methods commonly fail to converge to a stable solution where the players cannot improve their objective, i.e., the Nash equilibrium of the underlying game. Such issues raise the question of the existence of Nash equilibrium solutions in the GAN zero-sum game. In this work, we show through several theoretical and numerical results that indeed GAN zero-sum games may not have any local Nash equilibria. To characterize an equilibrium notion applicable to GANs, we consider the equilibrium of a new zero-sum game with an objective function given by a proximal operator applied to the original objective, a solution we call the proximal equilibrium. Unlike the Nash equilibrium, the proximal equilibrium captures the sequential nature of GANs, in which the generator moves first followed by the discriminator. We prove that the optimal generative model in Wasserstein GAN problems provides a proximal equilibrium. Inspired by these results, we propose a new approach, which we call proximal training, for solving GAN problems. We discuss several numerical experiments demonstrating the existence of proximal equilibrium solutions in GAN minimax problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا