ﻻ يوجد ملخص باللغة العربية
Ubiquitous sensors and smart devices from factories and communities are generating massive amounts of data, and ever-increasing computing power is driving the core of computation and services from the cloud to the edge of the network. As an important enabler broadly changing peoples lives, from face recognition to ambitious smart factories and cities, developments of artificial intelligence (especially deep learning, DL) based applications and services are thriving. However, due to efficiency and latency issues, the current cloud computing service architecture hinders the vision of providing artificial intelligence for every person and every organization at everywhere. Thus, unleashing DL services using resources at the network edge near the data sources has emerged as a desirable solution. Therefore, edge intelligence, aiming to facilitate the deployment of DL services by edge computing, has received significant attention. In addition, DL, as the representative technique of artificial intelligence, can be integrated into edge computing frameworks to build intelligent edge for dynamic, adaptive edge maintenance and management. With regard to mutually beneficial edge intelligence and intelligent edge, this paper introduces and discusses: 1) the application scenarios of both; 2) the practical implementation methods and enabling technologies, namely DL training and inference in the customized edge computing framework; 3) challenges and future trends of more pervasive and fine-grained intelligence. We believe that by consolidating information scattered across the communication, networking, and DL areas, this survey can help readers to understand the connections between enabling technologies while promoting further discussions on the fusion of edge intelligence and intelligent edge, i.e., Edge DL.
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications. Traditional cloudbased Mac
The concept of edge caching provision in emerging 5G and beyond mobile networks is a promising method to deal both with the traffic congestion problem in the core network as well as reducing latency to access popular content. In that respect end user
The difficulty of deploying various deep learning (DL) models on diverse DL hardware has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow
Recently, along with the rapid development of mobile communication technology, edge computing theory and techniques have been attracting more and more attentions from global researchers and engineers, which can significantly bridge the capacity of cl
With the proliferation of the Internet of Things (IoT) and the wide penetration of wireless networks, the surging demand for data communications and computing calls for the emerging edge computing paradigm. By moving the services and functions locate