ﻻ يوجد ملخص باللغة العربية
With the rapid adoption of machine learning techniques for large-scale applications in science and engineering comes the convergence of two grand challenges in visualization. First, the utilization of black box models (e.g., deep neural networks) calls for advanced techniques in exploring and interpreting model behaviors. Second, the rapid growth in computing has produced enormous datasets that require techniques that can handle millions or more samples. Although some solutions to these interpretability challenges have been proposed, they typically do not scale beyond thousands of samples, nor do they provide the high-level intuition scientists are looking for. Here, we present the first scalable solution to explore and analyze high-dimensional functions often encountered in the scientific data analysis pipeline. By combining a new streaming neighborhood graph construction, the corresponding topology computation, and a novel data aggregation scheme, namely topology aware datacubes, we enable interactive exploration of both the topological and the geometric aspect of high-dimensional data. Following two use cases from high-energy-density (HED) physics and computational biology, we demonstrate how these capabilities have led to crucial new insights in both applications.
A first line of attack in exploratory data analysis is data visualization, i.e., generating a 2-dimensional representation of data that makes clusters of similar points visually identifiable. Standard Johnson-Lindenstrauss dimensionality reduction do
Exploratory data science largely happens in computational notebooks with dataframe API, such as pandas, that support flexible means to transform, clean, and analyze data. Yet, visually exploring data in dataframes remains tedious, requiring substanti
A large number of sensors deployed in recent years in various setups and their data is readily available in dedicated databases or in the cloud. Of particular interest is real-time data processing and 3D visualization in web-based user interfaces tha
Compact semiconductor device models are essential for efficiently designing and analyzing large circuits. However, traditional compact model development requires a large amount of manual effort and can span many years. Moreover, inclusion of new phys
We introduce giotto-tda, a Python library that integrates high-performance topological data analysis with machine learning via a scikit-learn-compatible API and state-of-the-art C++ implementations. The librarys ability to handle various types of dat