ترغب بنشر مسار تعليمي؟ اضغط هنا

The Mass, Fake News, and Cognition Security

143   0   0.0 ( 0 )
 نشر من قبل Bin Guo
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The wide spread of fake news in social networks is posing threats to social stability, economic development and political democracy etc. Numerous studies have explored the effective detection approaches of online fake news, while few works study the intrinsic propagation and cognition mechanisms of fake news. Since the development of cognitive science paves a promising way for the prevention of fake news, we present a new research area called Cognition Security (CogSec), which studies the potential impacts of fake news to human cognition, ranging from misperception, untrusted knowledge acquisition, targeted opinion/attitude formation, to biased decision making, and investigates the effective ways for fake news debunking. CogSec is a multidisciplinary research field that leverages knowledge from social science, psychology, cognition science, neuroscience, AI and computer science. We first propose related definitions to characterize CogSec and review the literature history. We further investigate the key research challenges and techniques of CogSec, including human-content cognition mechanism, social influence and opinion diffusion, fake news detection and malicious bot detection. Finally, we summarize the open issues and future research directions, such as early detection of fake news, explainable fake news debunking, social contagion and diffusion models of fake news, and so on.



قيم البحث

اقرأ أيضاً

329 - Lu Cheng , Ruocheng Guo , Kai Shu 2020
Recent years have witnessed remarkable progress towards computational fake news detection. To mitigate its negative impact, we argue that it is critical to understand what user attributes potentially cause users to share fake news. The key to this ca usal-inference problem is to identify confounders -- variables that cause spurious associations between treatments (e.g., user attributes) and outcome (e.g., user susceptibility). In fake news dissemination, confounders can be characterized by fake news sharing behavior that inherently relates to user attributes and online activities. Learning such user behavior is typically subject to selection bias in users who are susceptible to share news on social media. Drawing on causal inference theories, we first propose a principled approach to alleviating selection bias in fake news dissemination. We then consider the learned unbiased fake news sharing behavior as the surrogate confounder that can fully capture the causal links between user attributes and user susceptibility. We theoretically and empirically characterize the effectiveness of the proposed approach and find that it could be useful in protecting society from the perils of fake news.
The rise of fake news in the past decade has brought with it a host of consequences, from swaying opinions on elections to generating uncertainty during a pandemic. A majority of methods developed to combat disinformation either focus on fake news co ntent or malicious actors who generate it. However, the virality of fake news is largely dependent upon the users who propagate it. A deeper understanding of these users can contribute to the development of a framework for identifying users who are likely to spread fake news. In this work, we study the characteristics and motivational factors of fake news spreaders on social media with input from psychological theories and behavioral studies. We then perform a series of experiments to determine if fake news spreaders can be found to exhibit different characteristics than other users. Further, we investigate our findings by testing whether the characteristics we observe amongst fake news spreaders in our experiments can be applied to the detection of fake news spreaders in a real social media environment.
252 - Giancarlo Ruffo 2021
The history of journalism and news diffusion is tightly coupled with the effort to dispel hoaxes, misinformation, propaganda, unverified rumours, poor reporting, and messages containing hate and divisions. With the explosive growth of online social m edia and billions of individuals engaged with consuming, creating, and sharing news, this ancient problem has surfaced with a renewed intensity threatening our democracies, public health, and news outlets credibility. This has triggered many researchers to develop new methods for studying, understanding, detecting, and preventing fake-news diffusion; as a consequence, thousands of scientific papers have been published in a relatively short period, making researchers of different disciplines to struggle in search of open problems and most relevant trends. The aim of this survey is threefold: first, we want to provide the researchers interested in this multidisciplinary and challenging area with a network-based analysis of the existing literature to assist them with a visual exploration of papers that can be of interest; second, we present a selection of the main results achieved so far adopting the network as an unifying framework to represent and make sense of data, to model diffusion processes, and to evaluate different debunking strategies. Finally, we present an outline of the most relevant research trends focusing on the moving target of fake-news, bots, and trolls identification by means of data mining and text technologies; despite scholars working on computational linguistics and networks traditionally belong to different scientific communities, we expect that forthcoming computational approaches to prevent fake news from polluting the social media must be developed using hybrid and up-to-date methodologies.
Amidst the threat of digital misinformation, we offer a pilot study regarding the efficacy of an online social media literacy campaign aimed at empowering individuals in Indonesia with skills to help them identify misinformation. We found that users who engaged with our online training materials and educational videos were more likely to identify misinformation than those in our control group (total $N$=1000). Given the promising results of our preliminary study, we plan to expand efforts in this area, and build upon lessons learned from this pilot study.
Fake news can significantly misinform people who often rely on online sources and social media for their information. Current research on fake news detection has mostly focused on analyzing fake news content and how it propagates on a network of user s. In this paper, we emphasize the detection of fake news by assessing its credibility. By analyzing public fake news data, we show that information on news sources (and authors) can be a strong indicator of credibility. Our findings suggest that an authors history of association with fake news, and the number of authors of a news article, can play a significant role in detecting fake news. Our approach can help improve traditional fake news detection methods, wherein content features are often used to detect fake news.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا