A Conjectural Brouwer Inequality for Higher-Dimensional Laplacian Spectra


الملخص بالإنكليزية

We present a generalization of Brouwers conjectural family of inequalities -- a popular family of inequalities in spectral graph theory bounding the partial sum of the Laplacian eigenvalues of graphs -- for the case of abstract simplicial complexes of any dimension. We prove that this family of inequalities holds for shifted simplicial complexes, which generalize threshold graphs, and give tighter bounds (linear in the dimension of the complexes) for simplicial trees. We prove that the conjecture holds for the the first, second, and last partial sums for all simplicial complexes, generalizing many known proofs for graphs to the case of simplicial complexes. We also show that the conjecture holds for the tth partial sum for all simplicial complexes with dimension at least t and matching number greater than $t$. Returning to the special case of graphs, we expand on a known proof to show that the Brouwers conjecture holds with equality for the tth partial sum where t is the maximum clique size of the graph minus one (or, equivalently, the number of cone vertices). Along the way, we develop machinery that may give further insights into related long-standing conjectures.

تحميل البحث