ﻻ يوجد ملخص باللغة العربية
The usual homogeneous form of equality type in Martin-Lof Type Theory contains identifications between elements of the same type. By contrast, the heterogeneous form of equality contains identifications between elements of possibly different types. This paper introduces a simple set of axioms for such types. The axioms are equivalent to the combination of systematic elimination rules for both forms of equality, albeit with typal (also known as propositional) computation properties, together with Streichers Axiom K, or equivalently, the principle of uniqueness of identity proofs.
The $lambda$-calculus is a handy formalism to specify the evaluation of higher-order programs. It is not very handy, however, when one interprets the specification as an execution mechanism, because terms can grow exponentially with the number of $be
This paper introduces an expressive class of indexed quotient-inductive types, called QWI types, within the framework of constructive type theory. They are initial algebras for indexed families of equational theories with possibly infinitary operator
In verified generic programming, one cannot exploit the structure of concrete data types but has to rely on well chosen sets of specifications or abstract data types (ADTs). Functors and monads are at the core of many applications of functional progr
This paper deals with the probabilistic behaviours of distributed systems described by a process calculus considering both probabilistic internal choices and nondeterministic external choices. For this calculus we define and study a typing system whi
This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program lo