ﻻ يوجد ملخص باللغة العربية
We investigate the conditions under which an uncontrollable background processes may be harnessed by an agent to perform a task that would otherwise be impossible within their operational framework. This situation can be understood from the perspective of resource theory: rather than harnessing useful quantum states to perform tasks, we propose a resource theory of quantum processes across multiple points in time. Uncontrollable background processes fulfil the role of resources, and a new set of objects called superprocesses, corresponding to operationally implementable control of the system undergoing the process, constitute the transformations between them. After formally introducing a framework for deriving resource theories of multi-time processes, we present a hierarchy of examples induced by restricting quantum or classical communication within the superprocess - corresponding to a client-server scenario. The resulting nine resource theories have different notions of quantum or classical memory as the determinant of their utility. Furthermore, one of these theories has a strict correspondence between non-useful processes and those that are Markovian and, therefore, could be said to be a true quantum resource theory of non-Markovianity.
We establish a convex resource theory of non-Markovianity under the constraint of small time intervals within the temporal evolution. We construct the free operations, free states and a generalized bona-fide measure of non-Markovianity. The framework
The non-Markovianity of the stochastic process called the quantum semi-Markov (QSM) process is studied using a recently proposed quantification of memory based on the deviation from semigroup evolution and thus providing a unified description of divi
To quantify non-Markovianity of tripartite quantum states from an operational viewpoint, we introduce a class $Omega^*$ of operations performed by three distant parties. A tripartite quantum state is a free state under $Omega^*$ if and only if it is
Quantum resource theories (QRTs) offer a highly versatile and powerful framework for studying different phenomena in quantum physics. From quantum entanglement to quantum computation, resource theories can be used to quantify a desirable quantum effe
The prevalent modus operandi within the framework of quantum resource theories has been to characterise and harness the resources within single objects, in what we can call emph{single-object} quantum resource theories. One can wonder however, whethe