ترغب بنشر مسار تعليمي؟ اضغط هنا

The Bach Doodle: Approachable music composition with machine learning at scale

51   0   0.0 ( 0 )
 نشر من قبل Cheng-Zhi Anna Huang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To make music composition more approachable, we designed the first AI-powered Google Doodle, the Bach Doodle, where users can create their own melody and have it harmonized by a machine learning model Coconet (Huang et al., 2017) in the style of Bach. For users to input melodies, we designed a simplified sheet-music based interface. To support an interactive experience at scale, we re-implemented Coconet in TensorFlow.js (Smilkov et al., 2019) to run in the browser and reduced its runtime from 40s to 2s by adopting dilated depth-wise separable convolutions and fusing operations. We also reduced the model download size to approximately 400KB through post-training weight quantization. We calibrated a speed test based on partial model evaluation time to determine if the harmonization request should be performed locally or sent to remote TPU servers. In three days, people spent 350 years worth of time playing with the Bach Doodle, and Coconet received more than 55 million queries. Users could choose to rate their compositions and contribute them to a public dataset, which we are releasing with this paper. We hope that the community finds this dataset useful for applications ranging from ethnomusicological studies, to music education, to improving machine learning models.



قيم البحث

اقرأ أيضاً

Variational Autoencoders(VAEs) have already achieved great results on image generation and recently made promising progress on music generation. However, the generation process is still quite difficult to control in the sense that the learned latent representations lack meaningful music semantics. It would be much more useful if people can modify certain music features, such as rhythm and pitch contour, via latent representations to test different composition ideas. In this paper, we propose a new method to inspect the pitch and rhythm interpretations of the latent representations and we name it disentanglement by augmentation. Based on the interpretable representations, an intuitive graphical user interface is designed for users to better direct the music creation process by manipulating the pitch contours and rhythmic complexity.
Deep representation learning offers a powerful paradigm for mapping input data onto an organized embedding space and is useful for many music information retrieval tasks. Two central methods for representation learning include deep metric learning an d classification, both having the same goal of learning a representation that can generalize well across tasks. Along with generalization, the emerging concept of disentangled representations is also of great interest, where multiple semantic concepts (e.g., genre, mood, instrumentation) are learned jointly but remain separable in the learned representation space. In this paper we present a single representation learning framework that elucidates the relationship between metric learning, classification, and disentanglement in a holistic manner. For this, we (1) outline past work on the relationship between metric learning and classification, (2) extend this relationship to multi-label data by exploring three different learning approaches and their disentangl
Convolutional neural networks (CNN) recently gained notable attraction in a variety of machine learning tasks: including music classification and style tagging. In this work, we propose implementing intermediate connections to the CNN architecture to facilitate the transfer of multi-scale/level knowledge between different layers. Our novel model for music tagging shows significant improvement in comparison to the proposed approaches in the literature, due to its ability to carry low-level timbral features to the last layer.
120 - Mingliang Zeng , Xu Tan , Rui Wang 2021
Symbolic music understanding, which refers to the understanding of music from the symbolic data (e.g., MIDI format, but not audio), covers many music applications such as genre classification, emotion classification, and music pieces matching. While good music representations are beneficial for these applications, the lack of training data hinders representation learning. Inspired by the success of pre-training models in natural language processing, in this paper, we develop MusicBERT, a large-scale pre-trained model for music understanding. To this end, we construct a large-scale symbolic music corpus that contains more than 1 million music songs. Since symbolic music contains more structural (e.g., bar, position) and diverse information (e.g., tempo, instrument, and pitch), simply adopting the pre-training techniques from NLP to symbolic music only brings marginal gains. Therefore, we design several mechanisms, including OctupleMIDI encoding and bar-level masking strategy, to enhance pre-training with symbolic music data. Experiments demonstrate the advantages of MusicBERT on four music understanding tasks, including melody completion, accompaniment suggestion, genre classification, and style classification. Ablation studies also verify the effectiveness of our designs of OctupleMIDI encoding and bar-level masking strategy in MusicBERT.
Statistical learning algorithms are finding more and more applications in science and technology. Atomic-scale modeling is no exception, with machine learning becoming commonplace as a tool to predict energy, forces and properties of molecules and co ndensed-phase systems. This short review summarizes recent progress in the field, focusing in particular on the problem of representing an atomic configuration in a mathematically robust and computationally efficient way. We also discuss some of the regression algorithms that have been used to construct surrogate models of atomic-scale properties. We then show examples of how the optimization of the machine-learning models can both incorporate and reveal insights onto the physical phenomena that underlie structure-property relations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا