ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental quantum homodyne tomography via machine learning

125   0   0.0 ( 0 )
 نشر من قبل Aleksey Fedorov
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Complete characterization of states and processes that occur within quantum devices is crucial for understanding and testing their potential to outperform classical technologies for communications and computing. However, solving this task with current state-of-the-art techniques becomes unwieldy for large and complex quantum systems. Here we realize and experimentally demonstrate a method for complete characterization of a quantum harmonic oscillator based on an artificial neural network known as the restricted Boltzmann machine. We apply the method to optical homodyne tomography and show it to allow full estimation of quantum states based on a smaller amount of experimental data compared to state-of-the-art methods. We link this advantage to reduced overfitting. Although our experiment is in the optical domain, our method provides a way of exploring quantum resources in a broad class of large-scale physical systems, such as superconducting circuits, atomic and molecular ensembles, and optomechanical systems.



قيم البحث

اقرأ أيضاً

Interacting spin networks are fundamental to quantum computing. Data-based tomography of time-independent spin networks has been achieved, but an open challenge is to ascertain the structures of time-dependent spin networks using time series measurem ents taken locally from a small subset of the spins. Physically, the dynamical evolution of a spin network under time-dependent driving or perturbation is described by the Heisenberg equation of motion. Motivated by this basic fact, we articulate a physics-enhanced machine learning framework whose core is Heisenberg neural networks. In particular, we develop a deep learning algorithm according to some physics motivated loss function based on the Heisenberg equation, which forces the neural network to follow the quantum evolution of the spin variables. We demonstrate that, from local measurements, not only the local Hamiltonian can be recovered but the Hamiltonian reflecting the interacting structure of the whole system can also be faithfully reconstructed. We test our Heisenberg neural machine on spin networks of a variety of structures. In the extreme case where measurements are taken from only one spin, the achieved tomography fidelity values can reach about 90%. The developed machine learning framework is applicable to any time-dependent systems whose quantum dynamical evolution is governed by the Heisenberg equation of motion.
We determine the resource scaling of machine learning-based quantum state reconstruction methods, in terms of inference and training, for systems of up to four qubits when constrained to pure states. Further, we examine system performance in the low- count regime, likely to be encountered in the tomography of high-dimensional systems. Finally, we implement our quantum state reconstruction method on an IBM Q quantum computer, and compare against both unconstrained and constrained MLE state reconstruction.
The classification of big data usually requires a mapping onto new data clusters which can then be processed by machine learning algorithms by means of more efficient and feasible linear separators. Recently, Lloyd et al. have advanced the proposal t o embed classical data into quantum ones: these live in the more complex Hilbert space where they can get split into linearly separable clusters. Here, we implement these ideas by engineering two different experimental platforms, based on quantum optics and ultra-cold atoms respectively, where we adapt and numerically optimize the quantum embedding protocol by deep learning methods, and test it for some trial classical data. We perform also a similar analysis on the Rigetti superconducting quantum computer. Therefore, we find that the quantum embedding approach successfully works also at the experimental level and, in particular, we show how different platforms could work in a complementary fashion to achieve this task. These studies might pave the way for future investigations on quantum machine learning techniques especially based on hybrid quantum technologies.
98 - A. I. Lvovsky 2003
I propose an iterative expectation maximization algorithm for reconstructing a quantum optical ensemble from a set of balanced homodyne measurements performed on an optical state. The algorithm applies directly to the acquired data, bypassing the int ermediate step of calculating marginal distributions. The advantages of the new method are made manifest by comparing it with the traditional inverse Radon transformation technique.
We present a continuous-variable experimental analysis of a two-photon Fock state of free-propagating light. This state is obtained from a pulsed non-degenerate parametric amplifier, which produces two intensity-correlated twin beams. Counting two ph otons in one beam projects the other beam in the desired two-photon Fock state, which is analyzed by using a pulsed homodyne detection. The Wigner function of the measured state is clearly negative. We developed a detailed analytic model which allows a fast and efficient analysis of the experimental results.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا