ﻻ يوجد ملخص باللغة العربية
We present a numerical scheme for solving an inverse problem for parameter estimation in tumor growth models for glioblastomas, a form of aggressive primary brain tumor. The growth model is a reaction-diffusion partial differential equation (PDE) for the tumor concentration. We use a PDE-constrained optimization formulation for the inverse problem. The unknown parameters are the reaction coefficient (proliferation), the diffusion coefficient (infiltration), and the initial condition field for the tumor PDE. Segmentation of Magnetic Resonance Imaging (MRI) scans from a single time snapshot drive the inverse problem where segmented tumor regions serve as partial observations of the tumor concentration. The precise time relative to tumor initiation is unknown, which poses an additional difficulty for inversion. We perform a frozen-coefficient spectral analysis and show that the inverse problem is severely ill-posed. We introduce a biophysically motivated regularization on the tumor initial condition. In particular, we assume that the tumor starts at a few locations (enforced with a sparsity constraint) and that the initial condition magnitude in the maximum norm equals one. We solve the resulting optimization problem using an inexact quasi-Newton method combined with a compressive sampling algorithm for the sparsity constraint. Our implementation uses PETSc and AccFFT libraries. We conduct numerical experiments on synthetic and clinical images to highlight the improved performance of our solver over an existing solver that uses a two-norm regularization for the calibration parameters. The existing solver is unable to localize the initial condition. Our new solver can localize the initial condition and recover infiltration and proliferation. In clinical datasets (for which the ground truth is unknown), our solver results in qualitatively different solutions compared to the existing solver.
In this article, we present a multispecies reaction-advection-diffusion partial differential equation (PDE) coupled with linear elasticity for modeling tumor growth. The model aims to capture the phenomenological features of glioblastoma multiforme o
We propose a method for extracting physics-based biomarkers from a single multiparametric Magnetic Resonance Imaging (mpMRI) scan bearing a glioma tumor. We account for mass effect, the deformation of brain parenchyma due to the growing tumor, which
The comprehension of tumor growth is a intriguing subject for scientists. New researches has been constantly required to better understand the complexity of this phenomenon. In this paper, we pursue a physical description that account for some experi
We derive a full 3-dimensional (3-D) model of inhomogeneous -- anisotropic diffusion in a tumor region coupled to a binary population model. The diffusion tensors are acquired using Diffusion Tensor Magnetic Resonance Imaging (DTI) from a patient dia
Presently 4T-1 luc cells were irradiated with proton under ultra-high dose rate FLASH or with gamma-ray with conventional dose rate, and then subcutaneous vaccination with or without Mn immuno-enhancing adjuvant into the mice for three times. One wee