ﻻ يوجد ملخص باللغة العربية
Nonparametric varying coefficient (NVC) models are useful for modeling time-varying effects on responses that are measured repeatedly. In this paper, we introduce the nonparametric varying coefficient spike-and-slab lasso (NVC-SSL) for Bayesian estimation and variable selection in NVC models. The NVC-SSL simultaneously selects and estimates the significant varying coefficients, while also accounting for temporal correlations. Our model can be implemented using a computationally efficient expectation-maximization (EM) algorithm. We also employ a simple method to make our model robust to misspecification of the temporal correlation structure. In contrast to frequentist approaches, little is known about the large-sample properties for Bayesian NVC models when the dimension of the covariates $p$ grows much faster than sample size $n$. In this paper, we derive posterior contraction rates for the NVC-SSL model when $p gg n$ under both correct specification and misspecification of the temporal correlation structure. Thus, our results are derived under weaker assumptions than those seen in other high-dimensional NVC models which assume independent and identically distributed (iid) random errors. Finally, we illustrate our methodology through simulation studies and data analysis. Our method is implemented in the publicly available R package NVCSSL.
This paper investigates the integration of gradient boosted decision trees and varying coefficient models. We introduce the tree boosted varying coefficient framework which justifies the implementation of decision tree boosting as the nonparametric e
There has been growing interest in the AI community for precise uncertainty quantification. Conditional density models f(y|x), where x represents potentially high-dimensional features, are an integral part of uncertainty quantification in prediction
Many studies have reported associations between later-life cognition and socioeconomic position in childhood, young adulthood, and mid-life. However, the vast majority of these studies are unable to quantify how these associations vary over time and
Spatial generalized linear mixed models (SGLMMs) are popular and flexible models for non-Gaussian spatial data. They are useful for spatial interpolations as well as for fitting regression models that account for spatial dependence, and are commonly
We study high-dimensional Bayesian linear regression with a general beta prime distribution for the scale parameter. Under the assumption of sparsity, we show that appropriate selection of the hyperparameters in the beta prime prior leads to the (nea