The theory of $G$-structures provides us with a unified framework for a large class of geometric structures, including symplectic, complex and Riemannian structures, as well as foliations and many others. Surprisingly, contact geometry - the odd-dimensional counterpart of symplectic geometry - does not fit naturally into this picture. In this paper, we introduce the notion of a homogeneous $G$-structure, which encompasses contact structures, as well as some other interesting examples that appear in the literature.