ترغب بنشر مسار تعليمي؟ اضغط هنا

A Roadmap for Astrophysics and Cosmology with High-Redshift 21 cm Intensity Mapping

76   0   0.0 ( 0 )
 نشر من قبل Joshua Dillon
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this white paper, we lay out a US roadmap for high-redshift 21 cm cosmology (30 < z < 6) in the 2020s. Beginning with the currently-funded HERA and MWA Phase II projects and advancing through the decade with a coordinated program of small-scale instrumentation, software, and analysis projects targeting technology development, this roadmap incorporates our current best understanding of the systematics confronting 21 cm cosmology into a plan for overcoming them, enabling next-generation, mid-scale 21 cm arrays to be proposed late in the decade. Submitted for consideration by the Astro2020 Decadal Survey Program Panel for Radio, Millimeter, and Submillimeter Observations from the Ground as a Medium-Sized Project.



قيم البحث

اقرأ أيضاً

Using the 21 cm line, observed all-sky and across the redshift range from 0 to 5, the large scale structure of the Universe can be mapped in three dimensions. This can be accomplished by studying specific intensity with resolution ~ 10 Mpc, rather th an via the usual galaxy redshift survey. The data set can be analyzed to determine Baryon Acoustic Oscillation wavelengths, in order to address the question: What is the nature of Dark Energy? In addition, the study of Large Scale Structure across this range addresses the questions: How does Gravity effect very large objects? and What is the composition our Universe? The same data set can be used to search for and catalog time variable and transient radio sources.
Line-Intensity Mapping is an emerging technique which promises new insights into the evolution of the Universe, from star formation at low redshifts to the epoch of reionization and cosmic dawn. It measures the integrated emission of atomic and molec ular spectral lines from galaxies and the intergalactic medium over a broad range of frequencies, using instruments with aperture requirements that are greatly relaxed relative to surveys for single objects. A coordinated, comprehensive, multi-line intensity-mapping experimental effort can efficiently probe over 80% of the volume of the observable Universe - a feat beyond the reach of other methods. Line-intensity mapping will uniquely address a wide array of pressing mysteries in galaxy evolution, cosmology, and fundamental physics. Among them are the cosmic history of star formation and galaxy evolution, the compositions of the interstellar and intergalactic media, the physical processes that take place during the epoch of reionization, cosmological inflation, the validity of Einsteins gravity theory on the largest scales, the nature of dark energy and the origin of dark matter.
We investigate the possibility of performing cosmological studies in the redshift range $2.5<z<5$ through suitable extensions of existing and upcoming radio-telescopes like CHIME, HIRAX and FAST. We use the Fisher matrix technique to forecast the bou nds that those instruments can place on the growth rate, the BAO distance scale parameters, the sum of the neutrino masses and the number of relativistic degrees of freedom at decoupling, $N_{rm eff}$. We point out that quantities that depend on the amplitude of the 21cm power spectrum, like $fsigma_8$, are completely degenerate with $Omega_{rm HI}$ and $b_{rm HI}$, and propose several strategies to independently constraint them through cross-correlations with other probes. Assuming $5%$ priors on $Omega_{rm HI}$ and $b_{rm HI}$, $k_{rm max}=0.2~h{rm Mpc}^{-1}$ and the primary beam wedge, we find that a HIRAX extension can constrain, within bins of $Delta z=0.1$: 1) the value of $fsigma_8$ at $simeq4%$, 2) the value of $D_A$ and $H$ at $simeq1%$. In combination with data from Euclid-like galaxy surveys and CMB S4, the sum of the neutrino masses can be constrained with an error equal to $23$ meV ($1sigma$), while $N_{rm eff}$ can be constrained within 0.02 ($1sigma$). We derive similar constraints for the extensions of the other instruments. We study in detail the dependence of our results on the instrument, amplitude of the HI bias, the foreground wedge coverage, the nonlinear scale used in the analysis, uncertainties in the theoretical modeling and the priors on $b_{rm HI}$ and $Omega_{rm HI}$. We conclude that 21cm intensity mapping surveys operating in this redshift range can provide extremely competitive constraints on key cosmological parameters.
The 21-cm and Lyman Alpha lines are the dominant line-emission spectral features at opposite ends of the spectrum of hydrogen. Each line can be used to create three dimensional intensity maps of large scale structure. The sky brightness at low redshi ft due to Lyman Alpha emission is estimated to be 0.4 Jy/Steradian, which is brighter than the zodiacal light foreground.
Calibration precision is currently a limiting systematic in 21 cm cosmology experiments. While there are innumerable calibration approaches, most can be categorized as either `sky-based, relying on an extremely accurate model of astronomical foregrou nd emission, or `redundant, requiring a precisely regular array with near-identical antenna response patterns. Both of these classes of calibration are inflexible to the realities of interferometric measurement. In practice, errors in the foreground model, antenna position offsets, and beam response inhomogeneities degrade calibration performance and contaminate the cosmological signal. Here we show that sky-based and redundant calibration can be unified into a highly general and physically motivated calibration framework based on a Bayesian statistical formalism. Our new framework includes sky and redundant calibration as special cases but can additionally support relaxing the rigid assumptions implicit in those approaches. Furthermore, we present novel calibration techniques such as redundant calibration for arrays with no redundant baselines, representing an alternative calibration method for imaging arrays such as the MWA Phase I. These new calibration approaches could mitigate systematics and reduce calibration error, thereby improving the precision of cosmological measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا