ترغب بنشر مسار تعليمي؟ اضغط هنا

A multi-wavelength study of the debris disc around 49 Cet

73   0   0.0 ( 0 )
 نشر من قبل Nicole Pawellek
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a multi-wavelength study of thermal emission and scattered light images we analyse the dust properties and structure of the debris disc around the A1-type main sequence star 49~Cet. As a basis for this study, we present new scattered light images of the debris disc known to possess both a high amount of dust and gas. The outer region of the disc is revealed in former coronagraphic H-band and our new Y-band images from the Very Large Telescope SPHERE instrument. We use the knowledge of the discs radial extent inferred from ALMA observations and the grain size distribution found by SED fitting to generate semi-dynamical dust models of the disc. We compare the models to scattered light and thermal emission data and find that a disc with a maximum of the surface density at 110~au and shallow edges can describe both thermal emission and scattered light observations. This suggests that grains close to the blow-out limit and large grains stem from the same planetesimal population and are mainly influenced by radiation pressure. The influence of inwards transport processes could not be analysed in this study.



قيم البحث

اقرأ أيضاً

Asteroids and comets (planetesimals) are created in gas- and dust-rich protoplanetary discs. The presence of these planetesimals around main-sequence stars is usually inferred from the detection of excess continuum emission at infrared wavelengths fr om dust grains produced by destructive processes within these discs. Modelling of the disc structure and dust grain properties for those discs is often hindered by the absence of any meaningful constraint on the location and spatial extent of the disc. Multi-wavelength, spatially resolved imaging is thus invaluable in refining the interpretation of these systems. Observations of HD 48682 at far-infrared (Spitzer,Herschel) and sub-millimetre (JCMT, SMA) wavelengths indicated the presence of an extended, cold debris disc with a blackbody temperature of 57.9 +- 0.7 K. Here, we combined these data to perform a comprehensive study of the disc architecture and its implications for the dust grain properties. The deconvolved images revealed a cold debris belt, verified by combining a 3D radiative transfer dust continuum model with image analysis to replicate thestructure using a single, axisymmetric annulus. A Markov chain Monte Carlo analysis calculated the maximum likelihood of HD 48682s disc radius (Rdisc = 89 +17 -20 au), fractional width(DeltaRdisc = 0.41 +0.27 -0.20), position angle (theta = 66.3 +4.5 -4.9 degrees), and inclination (phi = 112.5 +4.2 -4.2 degrees). HD 48682 has been revealed to host a collisionally active, broad disc whose emission is dominated by small dust grains, smin approx. 0.6 microns, and a size distribution exponent of 3.60 +- 0.02.
Previous observations revealed the existence of CO gas at nearly protoplanetary level in several dust-rich debris disks around young A-type stars. Here we used the ALMA 7m-array to measure $^{13}$CO and C$^{18}$O emission toward two debris disks, 49 Cet and HD 32297, and detected similarly high CO content ($>$0.01M$_oplus$). These high CO masses imply a highly efficient shielding of CO molecules against stellar and interstellar ultraviolet photons. Adapting a recent secondary gas disk model that considers both shielding by carbon atoms and self-shielding of CO, we can explain the observed CO level in both systems. Based on the derived gas densities we suggest that, in the HD 32297 disk, dust and gas are coupled and the dynamics of small grains is affected by the gaseous component. For 49 Cet, the question of coupling remains undecided. We found that the main stellar and disk propertiesof 49 Cet and HD 32297 are very similar to those of previously identified debris disks with high CO content. These objects constitute together the first known representatives of shielded debris disks.
We investigate the formation mechanism for the observed nearly polar aligned (perpendicular to the binary orbital plane) debris ring around the eccentric orbit binary 99 Herculis. An initially inclined nonpolar debris ring or disc will not remain fla t and will not evolve to a polar configuration, due to the effects of differential nodal precession that alter its flat structure. However, a gas disc with embedded well coupled solids around the eccentric binary may evolve to a polar configuration as a result of pressure forces that maintain the disc flatness and as a result of viscous dissipation that allows the disc to increase its tilt. Once the gas disc disperses, the debris disc is in a polar aligned state in which there is little precession. We use three-dimensional hydrodynamical simulations, linear theory, and particle dynamics to study the evolution of a misaligned circumbinary gas disc and explore the effects of the initial disc tilt, mass, and size. We find that for a wide range of parameter space, the polar alignment timescale is shorter than the lifetime of the gas disc. Using the observed level of alignment of 3 deg. from polar, we place an upper limit on the mass of the gas disc of about 0.014 M_sun at the time of gas dispersal. We conclude that the polar debris disc around 99 Her can be explained as the result of an initially moderately inclined gas disc with embedded solids. Such a disc may provide an environment for the formation of polar planets.
74 - E. Choquet , J. Milli , Z. Wahhaj 2016
We present the first scattered-light images of the debris disk around 49 ceti, a ~40 Myr A1 main sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS F110W images, as well as new coronagraphic H band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.1 (65 AU) to 4.6 (250 AU), and is seen at an inclination of 73degr, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 M_Jup at projected separations beyond 20 AU from the star (0.34). Comparison between the F110W and H-band images is consistent with a grey color of 49 cetis dust, indicating grains larger than >2microns. Our photometric measurements indicate a scattering efficiency / infrared excess ratio of 0.2-0.4, relatively low compared to other characterized debris disks. We find that 49 ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 ceti and hypothetic scenarios for the gas nature and origin.
Many white dwarf stars show signs of having accreted smaller bodies, implying that they may host planetary systems. A small number of these systems contain gaseous debris discs, visible through emission lines. We report a stable 123.4min periodic var iation in the strength and shape of the CaII emission line profiles originating from the debris disc around the white dwarf SDSSJ122859.93+104032.9. We interpret this short-period signal as the signature of a solid body held together by its internal strength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا