ﻻ يوجد ملخص باللغة العربية
Recently, hole-doped superconducting cuprates with the T-structure La1.8-xEu0.2SrxCuO4 (LESCO) have attracted a lot of attention. We have performed x-ray photoemission and absorption spectroscopy measurements on as-grown and reduced T0-LESCO. Results show that electrons and holes were doped by reduction annealing and Sr substitution, respectively. However, it is shown that the system remains on the electron-doped side of the Mott insulator or that the charge-transfer gap is collapsed in the parent compound.
The electronic structure of the magnetic semiconductor Ga$_{1-x}$Cr$_{x}$N and the effect of Si doping on it have been investigated by photoemission and soft x-ray absorption spectroscopy. We have confirmed that Cr in GaN is predominantly trivalent s
In order to realize superconductivity in cuprates with the T-type structure, not only chemical substitution (Ce doping) but also post-growth reduction annealing is necessary. In the case of thin films, however, well-designed reduction annealing alone
The total spectral weight textit{S} of the emergent low-energy quasipaticles in high-temperature superconductors is explored by x-ray absorption spectroscopy. In order to examine the applicability of the Hubbard model, regimes that cover from zero do
We have investigated the electronic structures of recently discovered superconductor FeSe by soft-x-ray and hard-x-ray photoemission spectroscopy with high bulk sensitivity. The large Fe 3d spectral weight is located in the vicinity of the Fermi leve
We have performed high-resolution angle-resolved photoemission spectroscopy on the optimally-doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ compound and determined the accurate momentum dependence of the superconducting (SC) gap in four Fermi-surface sheets i