ترغب بنشر مسار تعليمي؟ اضغط هنا

Power corrections in semi-inclusive deep inelastic scatterings at fixed target energies

123   0   0.0 ( 0 )
 نشر من قبل Tianbo Liu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The COMPASS collaboration published precise data on production cross section of charged hadrons in lepton-hadron semi-inclusive deep inelastic scattering, showing almost an order of magnitude larger than next-to-leading order QCD calculations when $P_{h_T}$ and $z_h$ are sufficiently large. We explore the role of power corrections to the theoretical calculations, and quantitatively demonstrate that the power corrections are extremely important for these data when the final-state multiplicity is low and the production kinematics is near the edge of phase space. Our finding motivates more detailed studies on power corrections for upcoming experiments at Jefferson Lab, as well as the future Electron-Ion Collider.



قيم البحث

اقرأ أيضاً

We derive mass corrections for semi-inclusive deep inelastic scattering of leptons from nucleons using a collinear factorization framework which incorporates the initial state mass of the target nucleon and the final state mass of the produced hadron . The formalism is constructed specifically to ensure that physical kinematic thresholds for the semi-inclusive process are explicitly respected. A systematic study of the kinematic dependencies of the mass corrections to semi-inclusive cross sections reveals that these are even larger than for inclusive structure functions, especially at very small and very large hadron momentum fractions. The hadron mass corrections compete with the experimental uncertainties at kinematics typical of current facilities, and will be important to efforts at extracting parton distributions or fragmentation functions from semi-inclusive processes at intermediate energies.
The spin-dependent cross sections for semi-inclusive lepton-nucleon scattering are derived in the framework of collinear factorization, including the effects of masses of the target and produced hadron at finite momentum transfer squared Q^2. At lead ing order the cross sections factorize into products of parton distribution and fragmentation functions evaluated in terms of new, mass-dependent scaling variables. The size of the hadron mass corrections is estimated at kinematics relevant for future semi-inclusive deep-inelastic scattering experiments.
We present the details of a new factorized approach to semi-inclusive deep-inelastic scattering which treats QED and QCD radiation on equal footing, and provides a systematically improvable approximation to the extraction of transverse momentum depen dent parton distributions. We demonstrate how the QED contributions can be well approximated by collinear factorization, and illustrate the application of the factorized approach to QED radiation in inclusive scattering. For semi-inclusive processes, we show how radiation effects prevent a well-defined photon-nucleon frame, forcing one to use a two-step process to account for the radiation. We illustrate the utility of the new method by explicit application to the spin-dependent Sivers and Collins asymmetries.
We present an analysis of hadroproduction of $J/psi$ and $psi(2S)$ at fixed-target energies in the framework of non-relativistic QCD (NRQCD). Using both pion- and proton-induced data, a new determination of the color-octet long-distance matrix elemen ts (LDMEs) is obtained. Compared with previous results, the contributions from the $q bar{q}$ and color-octet processes are significantly enhanced, especially at lower energies. A good agreement between the pion-induced $J/psi$ production data and NRQCD calculations using the newly obtained LDMEs is achieved. We find that the pion-induced charmonium production data are sensitive to the gluon density of pions, and favor pion PDFs with relatively large gluon contents at large $x$.
76 - Xiaodong Jiang 2005
A Jefferson Lab experiment proposal was discussed in this talk. The experiment is designed to measure the beam-target double-spin asymmetries $A_{1n}^h$ in semi-inclusive deep-inelastic $vec n({vec e}, e^prime pi^+)X$ and $vec n({vec e}, e^prime pi^- )X$ reactions on a longitudinally polarized $^3$He target. In addition to $A_{1n}^h$, the flavor non-singlet combination $A_{1n}^{pi^+ - pi^-}$, in which the gluons do not contribute, will be determined with high precision to extract $Delta d_v(x)$ independent of the knowledge of the fragmentation functions. The data will also impose strong constraints on quark and gluon polarizations through a global NLO QCD fit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا