ﻻ يوجد ملخص باللغة العربية
Time-resolved spectroscopies using intense THz pulses appear as a promising tool to address collective electronic excitations in condensed matter. In particular recent experiments showed the possibility to selectively excite collective modes emerging across a phase transition, as it is the case for superconducting and charge-density-wave (CDW) systems. One possible signature of these excitations is the emergence of coherent oscillations of the differential probe field in pump-probe protocols. While the analogy with the case of phonon modes suggests that the basic underlying mechanism should be a sum-frequency stimulated Raman process, a general theoretical scheme able to describe the experiments and to define the relevant optical quantity is still lacking. Here we provide this scheme by showing that coherent oscillations as a function of the pump-probe time delay can be linked to the convolution in the frequency domain between the squared pump field and a Raman-like non-linear optical kernel. This approach is applied and discussed in few paradigmatic examples: ordinary phonons in an insulator, and collective charge and Higgs fluctuations across a superconducting and a CDW transition. Our results not only account very well for the existing experimental data in a wide variety of systems, but they also offer an useful perspective to design future experiments in emerging materials.
Robust engineering of phonon squeezed states in optically excited solids has emerged as a promising tool to control and manipulate their properties. However, in contrast to quantum optical systems, detection of phonon squeezing is subtle and elusive,
We report the detection of a magnetic resonance mode in multiferroic Ba0.6Sr1.4Zn2Fe12O22 using time domain pump-probe reflectance spectroscopy. Magnetic sublattice precession is coherently excited via picosecond thermal modification of the exchange
Fully symmetric A1g phonons are expected to play a dominant role in electron scattering in strong topological insulators (TIs), thus limiting the ballistic transport of future electronic devices. Here, we report on femtosecond time-resolved observati
In high-resolution core-valence-valence (CVV) Auger electron spectroscopy from the surface of a solid at thermal equilibrium, the main correlation satellite, visible in the case of strong valence-electron correlations, corresponds to a bound state of
The nonlinear optical response of an excitonic insulator coupled to lattice degrees of freedom is shown to depend in strong and characteristic ways on whether the insulating behavior originates primarily from electron-electron or electron-lattice int