ﻻ يوجد ملخص باللغة العربية
Visual designs can be complex in modern data visualization systems, which poses special challenges for explaining them to the non-experts. However, few if any presentation tools are tailored for this purpose. In this study, we present Narvis, a slideshow authoring tool designed for introducing data visualizations to non-experts. Narvis targets two types of end-users: teachers, experts in data visualization who produce tutorials for explaining a data visualization, and students, non-experts who try to understand visualization designs through tutorials. We present an analysis of requirements through close discussions with the two types of end-users. The resulting considerations guide the design and implementation of Narvis. Additionally, to help teachers better organize their introduction slideshows, we specify a data visualization as a hierarchical combination of components, which are automatically detected and extracted by Narvis. The teachers craft an introduction slideshow through first organizing these components, and then explaining them sequentially. A series of templates are provided for adding annotations and animations to improve efficiency during the authoring process. We evaluate Narvis through a qualitative analysis of the authoring experience, and a preliminary evaluation of the generated slideshows.
Modern visualization tools aim to allow data analysts to easily create exploratory visualizations. When the input data layout conforms to the visualization design, users can easily specify visualizations by mapping data columns to visual channels of
Transitions are widely used in data videos to seamlessly connect data-driven charts or connect visualizations and non-data-driven motion graphics. To inform the transition designs in data videos, we conduct a content analysis based on more than 3500
Electronic health records (EHR) systematically represent patient data in digital form. However, text and visualization based EHR systems are poorly integrated in the hospital workflow due to their complex and rather non-intuitive access structure. Th
Visualizations themselves have become a data format. Akin to other data formats such as text and images, visualizations are increasingly created, stored, shared, and (re-)used with artificial intelligence (AI) techniques. In this survey, we probe the
Utilizing Visualization-oriented Natural Language Interfaces (V-NLI) as a complementary input modality to direct manipulation for visual analytics can provide an engaging user experience. It enables users to focus on their tasks rather than worrying