Strain distribution and thermal strain relaxation in MOVPE grown hBN films on sapphire substrates


الملخص بالإنكليزية

Recently, hexagonal boron nitride (hBN) layers have generated a lot of interest as ideal substrates for 2D stacked devices. Sapphire-supported thin hBN films of different thicknesses are grown using metalorganic vapour phase epitaxy technique by following a flow modulation scheme. Though these films of relatively large size are potential candidates to be employed in designing real devices, they exhibit wrinkling. The formation of wrinkles is a key signature of strain distribution in a film. Raman imaging has been utilized to study the residual strain distribution in these wrinkled hBN films. An increase in the overall compressive strain in the films with an increase in the layer thickness has been observed. To find whether the residual lattice strain in the films can be removed by a thermal treatment, temperature dependent Raman measurements of these films are carried out. The study demonstrates that the thermal rate of strain evolution is higher in the films of lower thickness than in the thicker films. This observation further provides a possible explanation for the variation of strain in the as-grown films. An empirical relation has been proposed for estimating the residual strain from the morphology of the films. We have also shown that the residual strain can be partially released by the delamination of the films.

تحميل البحث